better integrations

This commit is contained in:
Jack Humbert 2016-01-20 00:06:52 -05:00
parent 6e3c36360e
commit eb61700912
11 changed files with 402 additions and 329 deletions

View File

@ -50,8 +50,7 @@ TMK_DIR = ../../tmk_core
TARGET_DIR = .
# # project specific files
SRC = planck.c \
backlight.c
SRC = planck.c
ifdef KEYMAP
SRC := keymaps/keymap_$(KEYMAP).c $(SRC)
@ -124,9 +123,13 @@ COMMAND_ENABLE = yes # Commands for debug and configuration
# NKRO_ENABLE = yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality
MIDI_ENABLE = YES # MIDI controls
AUDIO_ENABLE = YES # Audio output on port C6
# UNICODE_ENABLE = YES # Unicode
# BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifdef BACKLIGHT_ENABLE
SRC += backlight.c
endif
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax

View File

@ -2,7 +2,9 @@
// this is the style you want to emulate.
#include "planck.h"
#include "backlight.h"
#ifdef BACKLIGHT_ENABLE
#include "backlight.h"
#endif
// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
@ -58,7 +60,9 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
case 0:
if (record->event.pressed) {
register_code(KC_RSFT);
backlight_step();
#ifdef BACKLIGHT_ENABLE
backlight_step();
#endif
} else {
unregister_code(KC_RSFT);
}

View File

@ -1,8 +1,10 @@
#include "keymap_common.h"
// #include "backlight.h"
#ifdef BACKLIGHT_ENABLE
#include "backlight.h"
#endif
#include "action_layer.h"
#include "keymap_midi.h"
#include "beeps.h"
#include "audio.h"
#include <avr/boot.h>
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
@ -86,7 +88,9 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
play_notes(&walk_up, 3, false);
// play_note(440, 20);
// register_code(KC_RSFT);
// backlight_set(BACKLIGHT_LEVELS);
#ifdef BACKLIGHT_ENABLE
backlight_set(BACKLIGHT_LEVELS);
#endif
default_layer_and(0);
default_layer_or((1<<5));
@ -118,17 +122,14 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
// register_code(hextokeycode((lock & 0x0F)));
// unregister_code(hextokeycode((lock & 0x0F)));
// note(0+12, 20);
// note(0+24, 20);
} else {
unregister_code(KC_RSFT);
play_notes(&walk_dn, 3, false);
// backlight_set(0);
#ifdef BACKLIGHT_ENABLE
backlight_set(0);
#endif
default_layer_and(0);
default_layer_or(0);
// note(0+24, 20);
// note(0, 20);
// play_note(4, 20);
}
break;
}
@ -149,44 +150,5 @@ float start_up[][2] = {
void * matrix_init_user(void) {
init_notes();
play_notes(&start_up, 9, false);
// play_note(((double)261.6*3)*pow(2.0,(36)/12.0), 0xF);
// _delay_ms(50);
// play_note(((double)261.6*3)*pow(2.0,(48)/12.0), 0xF);
// _delay_ms(25);
// stop_note(((double)261.6*3)*pow(2.0,(48)/12.0));
// play_note(((double)261.6*3)*pow(2.0,(48)/12.0), 0xF);
// _delay_ms(25);
// stop_note(((double)261.6*3)*pow(2.0,(48)/12.0));
// stop_note(((double)261.6*3)*pow(2.0,(36)/12.0));
// play_note(((double)261.6*3)*pow(2.0,(62)/12.0), 0xF);
// _delay_ms(50);
// stop_note(((double)261.6*3)*pow(2.0,(62)/12.0));
// play_note(((double)261.6*3)*pow(2.0,(64)/12.0), 0xF);
// _delay_ms(50);
// stop_note(((double)261.6*3)*pow(2.0,(64)/12.0));
}
// void * matrix_scan_user(void) {
// if (layer_state & (1<<2)) {
// if (!playing_notes)
// play_notes(&start_up, 9, true);
// } else if (layer_state & (1<<3)) {
// if (!playing_notes)
// play_notes(&start_up, 9, true);
// } else {
// if (playing_notes)
// stop_all_notes();
// }
// }

View File

@ -3,7 +3,9 @@
#include "matrix.h"
#include "keymap_common.h"
// #include "backlight.h"
#ifdef BACKLIGHT_ENABLE
#include "backlight.h"
#endif
#include <stddef.h>
#ifdef MIDI_ENABLE
#include <keymap_midi.h>

362
quantum/audio.c Normal file
View File

@ -0,0 +1,362 @@
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include "audio.h"
#include "keymap_common.h"
#define PI 3.14159265
// #define PWM_AUDIO
#ifdef PWM_AUDIO
#include "wave.h"
#define SAMPLE_DIVIDER 39
#define SAMPLE_RATE (2000000.0/SAMPLE_DIVIDER/2048)
// Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap
#endif
void delay_us(int count) {
while(count--) {
_delay_us(1);
}
}
int voices = 0;
int voice_place = 0;
double frequency = 0;
int volume = 0;
long position = 0;
double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
bool sliding = false;
int max = 0xFF;
float sum = 0;
int value = 128;
float place = 0;
float places[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint16_t place_int = 0;
bool repeat = true;
uint8_t * sample;
uint16_t sample_length = 0;
bool notes = false;
bool note = false;
float note_frequency = 0;
float note_length = 0;
uint16_t note_position = 0;
float (* notes_pointer)[][2];
uint8_t notes_length;
bool notes_repeat;
uint8_t current_note = 0;
void stop_all_notes() {
voices = 0;
#ifdef PWM_AUDIO
TIMSK3 &= ~_BV(OCIE3A);
#else
TIMSK3 &= ~_BV(OCIE3A);
TCCR3A &= ~_BV(COM3A1);
#endif
notes = false;
note = false;
frequency = 0;
volume = 0;
for (int i = 0; i < 8; i++) {
frequencies[i] = 0;
volumes[i] = 0;
}
}
void stop_note(double freq) {
#ifdef PWM_AUDIO
freq = freq / SAMPLE_RATE;
#endif
for (int i = 7; i >= 0; i--) {
if (frequencies[i] == freq) {
frequencies[i] = 0;
volumes[i] = 0;
for (int j = i; (j < 7); j++) {
frequencies[j] = frequencies[j+1];
frequencies[j+1] = 0;
volumes[j] = volumes[j+1];
volumes[j+1] = 0;
}
}
}
voices--;
if (voices < 0)
voices = 0;
if (voices == 0) {
#ifdef PWM_AUDIO
TIMSK3 &= ~_BV(OCIE3A);
#else
TIMSK3 &= ~_BV(OCIE3A);
TCCR3A &= ~_BV(COM3A1);
#endif
frequency = 0;
volume = 0;
note = false;
} else {
double freq = frequencies[voices - 1];
int vol = volumes[voices - 1];
double starting_f = frequency;
if (frequency < freq) {
sliding = true;
for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 2000.0)) {
frequency = f;
}
sliding = false;
} else if (frequency > freq) {
sliding = true;
for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 2000.0)) {
frequency = f;
}
sliding = false;
}
frequency = freq;
volume = vol;
}
}
void init_notes() {
#ifdef PWM_AUDIO
PLLFRQ = _BV(PDIV2);
PLLCSR = _BV(PLLE);
while(!(PLLCSR & _BV(PLOCK)));
PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */
/* Init a fast PWM on Timer4 */
TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */
TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */
OCR4A = 0;
/* Enable the OC4A output */
DDRC |= _BV(PORTC6);
TIMSK3 &= ~_BV(OCIE3A); // Turn off 3A interputs
TCCR3A = 0x0; // Options not needed
TCCR3B = _BV(CS31) | _BV(CS30) | _BV(WGM32); // 64th prescaling and CTC
OCR3A = SAMPLE_DIVIDER - 1; // Correct count/compare, related to sample playback
#else
DDRC |= _BV(PORTC6);
TIMSK3 &= ~_BV(OCIE3A); // Turn off 3A interputs
TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30);
#endif
}
ISR(TIMER3_COMPA_vect) {
if (note) {
#ifdef PWM_AUDIO
if (voices == 1) {
// SINE
OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 2;
// SQUARE
// if (((int)place) >= 1024){
// OCR4A = 0xFF >> 2;
// } else {
// OCR4A = 0x00;
// }
// SAWTOOTH
// OCR4A = (int)place / 4;
// TRIANGLE
// if (((int)place) >= 1024) {
// OCR4A = (int)place / 2;
// } else {
// OCR4A = 2048 - (int)place / 2;
// }
place += frequency;
if (place >= SINE_LENGTH)
place -= SINE_LENGTH;
} else {
int sum = 0;
for (int i = 0; i < voices; i++) {
// SINE
sum += pgm_read_byte(&sinewave[(uint16_t)places[i]]) >> 2;
// SQUARE
// if (((int)places[i]) >= 1024){
// sum += 0xFF >> 2;
// } else {
// sum += 0x00;
// }
places[i] += frequencies[i];
if (places[i] >= SINE_LENGTH)
places[i] -= SINE_LENGTH;
}
OCR4A = sum;
}
#else
if (frequency > 0) {
// ICR3 = (int)(((double)F_CPU) / frequency); // Set max to the period
// OCR3A = (int)(((double)F_CPU) / frequency) >> 1; // Set compare to half the period
if (place > 10) {
voice_place = (voice_place + 1) % voices;
place = 0.0;
}
ICR3 = (int)(((double)F_CPU) / frequencies[voice_place]); // Set max to the period
OCR3A = (int)(((double)F_CPU) / frequencies[voice_place]) >> 1; // Set compare to half the period
place++;
}
#endif
}
// SAMPLE
// OCR4A = pgm_read_byte(&sample[(uint16_t)place_int]);
// place_int++;
// if (place_int >= sample_length)
// if (repeat)
// place_int -= sample_length;
// else
// TIMSK3 &= ~_BV(OCIE3A);
if (notes) {
#ifdef PWM_AUDIO
OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 0;
place += note_frequency;
if (place >= SINE_LENGTH)
place -= SINE_LENGTH;
#else
if (note_frequency > 0) {
ICR3 = (int)(((double)F_CPU) / note_frequency); // Set max to the period
OCR3A = (int)(((double)F_CPU) / note_frequency) >> 1; // Set compare to half the period
}
#endif
note_position++;
if (note_position >= note_length) {
current_note++;
if (current_note >= notes_length) {
if (notes_repeat) {
current_note = 0;
} else {
#ifdef PWM_AUDIO
TIMSK3 &= ~_BV(OCIE3A);
#else
TIMSK3 &= ~_BV(OCIE3A);
TCCR3A &= ~_BV(COM3A1);
#endif
notes = false;
return;
}
}
#ifdef PWM_AUDIO
note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
note_length = (*notes_pointer)[current_note][1];
#else
note_frequency = (*notes_pointer)[current_note][0];
note_length = (*notes_pointer)[current_note][1] / 4;
#endif
note_position = 0;
}
}
}
void play_notes(float (*np)[][2], uint8_t n_length, bool n_repeat) {
if (note)
stop_all_notes();
notes = true;
notes_pointer = np;
notes_length = n_length;
notes_repeat = n_repeat;
place = 0;
current_note = 0;
#ifdef PWM_AUDIO
note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
note_length = (*notes_pointer)[current_note][1];
#else
note_frequency = (*notes_pointer)[current_note][0];
note_length = (*notes_pointer)[current_note][1] / 4;
#endif
note_position = 0;
#ifdef PWM_AUDIO
TIMSK3 |= _BV(OCIE3A);
#else
TIMSK3 |= _BV(OCIE3A);
TCCR3A |= _BV(COM3A1);
#endif
}
void play_sample(uint8_t * s, uint16_t l, bool r) {
stop_all_notes();
place_int = 0;
sample = s;
sample_length = l;
repeat = r;
#ifdef PWM_AUDIO
TIMSK3 |= _BV(OCIE3A);
#else
#endif
}
void play_note(double freq, int vol) {
if (notes)
stop_all_notes();
note = true;
#ifdef PWM_AUDIO
freq = freq / SAMPLE_RATE;
#endif
if (freq > 0) {
if (frequency != 0) {
double starting_f = frequency;
if (frequency < freq) {
for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 2000.0)) {
frequency = f;
}
} else if (frequency > freq) {
for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 2000.0)) {
frequency = f;
}
}
}
frequency = freq;
volume = vol;
frequencies[voices] = frequency;
volumes[voices] = volume;
voices++;
}
#ifdef PWM_AUDIO
TIMSK3 |= _BV(OCIE3A);
#else
TIMSK3 |= _BV(OCIE3A);
TCCR3A |= _BV(COM3A1);
#endif
}

View File

@ -3,13 +3,9 @@
#include <avr/io.h>
#include <util/delay.h>
bool playing_notes;
void play_sample(uint8_t * s, uint16_t l, bool r);
void play_note(double freq, int vol);
void stop_note(double freq);
void stop_all_notes();
void init_notes();
void play_notes(float (*np)[][2], uint8_t n_length, bool n_repeat);

View File

@ -1,265 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include "beeps.h"
#include "keymap_common.h"
#include "wave.h"
#define PI 3.14159265
#define SAMPLE_DIVIDER 39
#define SAMPLE_RATE (2000000.0/SAMPLE_DIVIDER/2048)
// Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap
void delay_us(int count) {
while(count--) {
_delay_us(1);
}
}
int voices = 0;
double frequency = 0;
int volume = 0;
long position = 0;
double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
bool sliding = false;
#define RANGE 1000
volatile int i=0; //elements of the wave
int max = 0xFF;
float sum = 0;
int value = 128;
float place = 0;
uint16_t place_int = 0;
bool repeat = true;
uint8_t * sample;
uint16_t sample_length = 0;
bool notes = false;
float note_frequency = 0;
float note_length = 0;
uint16_t note_position = 0;
float (* notes_pointer)[][2];
uint8_t notes_length;
bool notes_repeat;
uint8_t current_note = 0;
void stop_all_notes() {
voices = 0;
TIMSK3 &= ~_BV(OCIE3A);
notes = false;
playing_notes = false;
frequency = 0;
volume = 0;
for (int i = 0; i < 8; i++) {
frequencies[i] = 0;
volumes[i] = 0;
}
}
void stop_note(double freq) {
freq = freq / SAMPLE_RATE;
for (int i = 7; i >= 0; i--) {
if (frequencies[i] == freq) {
frequencies[i] = 0;
volumes[i] = 0;
for (int j = i; (j < 7); j++) {
frequencies[j] = frequencies[j+1];
frequencies[j+1] = 0;
volumes[j] = volumes[j+1];
volumes[j+1] = 0;
}
}
}
voices--;
if (voices < 0)
voices = 0;
if (voices == 0) {
TIMSK3 &= ~_BV(OCIE3A);
frequency = 0;
volume = 0;
} else {
double freq = frequencies[voices - 1];
int vol = volumes[voices - 1];
double starting_f = frequency;
if (frequency < freq) {
sliding = true;
for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 500.0)) {
frequency = f;
}
sliding = false;
} else if (frequency > freq) {
sliding = true;
for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 500.0)) {
frequency = f;
}
sliding = false;
}
frequency = freq;
volume = vol;
}
}
void init_notes() {
PLLFRQ = _BV(PDIV2);
PLLCSR = _BV(PLLE);
while(!(PLLCSR & _BV(PLOCK)));
PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */
/* Init a fast PWM on Timer4 */
TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */
TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */
OCR4A = 0;
/* Enable the OC4A output */
DDRC |= _BV(PORTC6);
TIMSK3 &= ~_BV(OCIE3A); // Turn off 3A interputs
TCCR3A = 0x0; // Options not needed
TCCR3B = _BV(CS31) | _BV(CS30) | _BV(WGM32); // 64th prescaling and CTC
OCR3A = SAMPLE_DIVIDER - 1; // Correct count/compare, related to sample playback
playing_notes = false;
}
ISR(TIMER3_COMPA_vect) {
// SINE
// OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]);
// SQUARE
// if (((int)place) >= 1024){
// OCR4A = 0xFF;
// } else {
// OCR4A = 0x00;
// }
// SAWTOOTH
// OCR4A = (int)place / 4;
// TRIANGLE
// if (((int)place) >= 1024) {
// OCR4A = (int)place / 2;
// } else {
// OCR4A = 2048 - (int)place / 2;
// }
// place += frequency;
// if (place >= SINE_LENGTH)
// if (repeat)
// place -= SINE_LENGTH;
// else
// TIMSK3 &= ~_BV(OCIE3A);
// SAMPLE
// OCR4A = pgm_read_byte(&sample[(uint16_t)place_int]);
// place_int++;
// if (place_int >= sample_length)
// if (repeat)
// place_int -= sample_length;
// else
// TIMSK3 &= ~_BV(OCIE3A);
if (notes) {
OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 0;
place += note_frequency;
if (place >= SINE_LENGTH)
place -= SINE_LENGTH;
note_position++;
if (note_position >= note_length) {
current_note++;
if (current_note >= notes_length) {
if (notes_repeat) {
current_note = 0;
} else {
TIMSK3 &= ~_BV(OCIE3A);
notes = false;
playing_notes = false;
return;
}
}
note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
note_length = (*notes_pointer)[current_note][1];
note_position = 0;
}
}
}
void play_notes(float (*np)[][2], uint8_t n_length, bool n_repeat) {
notes = true;
notes_pointer = np;
notes_length = n_length;
notes_repeat = n_repeat;
place = 0;
current_note = 0;
note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
note_length = (*notes_pointer)[current_note][1];
// note_frequency = 880.0 / SAMPLE_RATE;
// note_length = 1000;
note_position = 0;
TIMSK3 |= _BV(OCIE3A);
playing_notes = true;
}
void play_sample(uint8_t * s, uint16_t l, bool r) {
place_int = 0;
sample = s;
sample_length = l;
repeat = r;
TIMSK3 |= _BV(OCIE3A);
playing_notes = true;
}
void play_note(double freq, int vol) {
freq = freq / SAMPLE_RATE;
if (freq > 0) {
if (frequency != 0) {
double starting_f = frequency;
if (frequency < freq) {
for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 500.0)) {
frequency = f;
}
} else if (frequency > freq) {
for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 500.0)) {
frequency = f;
}
}
}
frequency = freq;
volume = vol;
frequencies[voices] = frequency;
volumes[voices] = volume;
voices++;
}
TIMSK3 |= _BV(OCIE3A);
}

View File

@ -100,10 +100,10 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt)
if (record->event.pressed) {
// midi_send_noteon(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
midi_send_noteon(&midi_device, 0, (starting_note + SCALE[record->event.key.col + offset])+12*(MATRIX_ROWS - record->event.key.row), 127);
play_note(((double)261.626)*pow(2.0, 0.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)), 0xF);
play_note(((double)261.626)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)), 0xF);
} else {
// midi_send_noteoff(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
midi_send_noteoff(&midi_device, 0, (starting_note + SCALE[record->event.key.col + offset])+12*(MATRIX_ROWS - record->event.key.row), 127);
stop_note(((double)261.626)*pow(2.0, 0.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)));
stop_note(((double)261.626)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)));
}
}

View File

@ -9,8 +9,11 @@ ifndef CUSTOM_MATRIX
endif
ifdef MIDI_ENABLE
SRC += $(QUANTUM_DIR)/keymap_midi.c \
$(QUANTUM_DIR)/beeps.c
SRC += $(QUANTUM_DIR)/keymap_midi.c
endif
ifdef AUDIO_ENABLE
SRC += $(QUANTUM_DIR)/audio.c
endif
ifdef UNICODE_ENABLE

View File

@ -53,6 +53,9 @@ ifdef MIDI_ENABLE
OPT_DEFS += -DMIDI_ENABLE
endif
ifdef AUDIO_ENABLE
OPT_DEFS += -DAUDIO_ENABLE
endif
ifdef USB_6KRO_ENABLE
OPT_DEFS += -DUSB_6KRO_ENABLE

View File

@ -52,8 +52,8 @@
#include "descriptor.h"
#include "lufa.h"
#ifdef MIDI_ENABLE
#include <beeps.h>
#ifdef AUDIO_ENABLE
#include <audio.h>
#endif
#ifdef BLUETOOTH_ENABLE
@ -946,6 +946,8 @@ int main(void)
#ifdef MIDI_ENABLE
void fallthrough_callback(MidiDevice * device,
uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2){
#ifdef AUDIO_ENABLE
if (cnt == 3) {
switch (byte0 & 0xF0) {
case MIDI_NOTEON:
@ -959,6 +961,7 @@ void fallthrough_callback(MidiDevice * device,
if (byte0 == MIDI_STOP) {
stop_all_notes();
}
#endif
}
void cc_callback(MidiDevice * device,