/* * Copyright 2020 Richard Sutherland (rich@brickbots.com) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "wpm.h" #include "timer.h" #include "keycode.h" #include "quantum_keycodes.h" #include "action_util.h" #include <math.h> // WPM Stuff static uint8_t current_wpm = 0; static uint32_t wpm_timer = 0; /* The WPM calculation works by specifying a certain number of 'periods' inside * a ring buffer, and we count the number of keypresses which occur in each of * those periods. Then to calculate WPM, we add up all of the keypresses in * the whole ring buffer, divide by the number of keypresses in a 'word', and * then adjust for how much time is captured by our ring buffer. The size * of the ring buffer can be configured using the keymap configuration * value `WPM_SAMPLE_PERIODS`. * */ #define MAX_PERIODS (WPM_SAMPLE_PERIODS) #define PERIOD_DURATION (1000 * WPM_SAMPLE_SECONDS / MAX_PERIODS) static int16_t period_presses[MAX_PERIODS] = {0}; static uint8_t current_period = 0; static uint8_t periods = 1; #if !defined(WPM_UNFILTERED) /* LATENCY is used as part of filtering, and controls how quickly the reported * WPM trails behind our actual instantaneous measured WPM value, and is * defined in milliseconds. So for LATENCY == 100, the displayed WPM is * smoothed out over periods of 0.1 seconds. This results in a nice, * smoothly-moving reported WPM value which nevertheless is never more than * 0.1 seconds behind the typist's actual current WPM. * * LATENCY is not used if WPM_UNFILTERED is defined. */ # define LATENCY (100) static uint32_t smoothing_timer = 0; static uint8_t prev_wpm = 0; static uint8_t next_wpm = 0; #endif void set_current_wpm(uint8_t new_wpm) { current_wpm = new_wpm; } uint8_t get_current_wpm(void) { return current_wpm; } bool wpm_keycode(uint16_t keycode) { return wpm_keycode_kb(keycode); } __attribute__((weak)) bool wpm_keycode_kb(uint16_t keycode) { return wpm_keycode_user(keycode); } __attribute__((weak)) bool wpm_keycode_user(uint16_t keycode) { if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) { keycode = keycode & 0xFF; } else if (keycode > 0xFF) { keycode = 0; } if ((keycode >= KC_A && keycode <= KC_0) || (keycode >= KC_TAB && keycode <= KC_SLASH)) { return true; } return false; } #if defined(WPM_ALLOW_COUNT_REGRESSION) __attribute__((weak)) uint8_t wpm_regress_count(uint16_t keycode) { bool weak_modded = (keycode >= QK_LCTL && keycode < QK_LSFT) || (keycode >= QK_RCTL && keycode < QK_RSFT); if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) { keycode = keycode & 0xFF; } else if (keycode > 0xFF) { keycode = 0; } if (keycode == KC_DELETE || keycode == KC_BACKSPACE) { if (((get_mods() | get_oneshot_mods()) & MOD_MASK_CTRL) || weak_modded) { return WPM_ESTIMATED_WORD_SIZE; } else { return 1; } } else { return 0; } } #endif // Outside 'raw' mode we smooth results over time. void update_wpm(uint16_t keycode) { if (wpm_keycode(keycode) && period_presses[current_period] < INT16_MAX) { period_presses[current_period]++; } #if defined(WPM_ALLOW_COUNT_REGRESSION) uint8_t regress = wpm_regress_count(keycode); if (regress && period_presses[current_period] > INT16_MIN) { period_presses[current_period]--; } #endif } void decay_wpm(void) { int32_t presses = period_presses[0]; for (int i = 1; i <= periods; i++) { presses += period_presses[i]; } if (presses < 0) { presses = 0; } int32_t elapsed = timer_elapsed32(wpm_timer); uint32_t duration = (((periods)*PERIOD_DURATION) + elapsed); int32_t wpm_now = (60000 * presses) / (duration * WPM_ESTIMATED_WORD_SIZE); if (wpm_now < 0) // set some reasonable WPM measurement limits wpm_now = 0; if (wpm_now > 240) wpm_now = 240; if (elapsed > PERIOD_DURATION) { current_period = (current_period + 1) % MAX_PERIODS; period_presses[current_period] = 0; periods = (periods < MAX_PERIODS - 1) ? periods + 1 : MAX_PERIODS - 1; elapsed = 0; wpm_timer = timer_read32(); } if (presses < 2) // don't guess high WPM based on a single keypress. wpm_now = 0; #if defined(WPM_LAUNCH_CONTROL) /* * If the `WPM_LAUNCH_CONTROL` option is enabled, then whenever our WPM * drops to absolute zero due to no typing occurring within our sample * ring buffer, we reset and start measuring fresh, which lets our WPM * immediately reach the correct value even before a full sampling buffer * has been filled. */ if (presses == 0) { current_period = 0; periods = 0; wpm_now = 0; period_presses[0] = 0; } #endif // WPM_LAUNCH_CONTROL #if defined(WPM_UNFILTERED) current_wpm = wpm_now; #else int32_t latency = timer_elapsed32(smoothing_timer); if (latency > LATENCY) { smoothing_timer = timer_read32(); prev_wpm = current_wpm; next_wpm = wpm_now; } current_wpm = prev_wpm + (latency * ((int)next_wpm - (int)prev_wpm) / LATENCY); #endif }