qmk_firmware/quantum/quantum.c

738 lines
22 KiB
C

/* Copyright 2016-2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ctype.h>
#include "quantum.h"
#ifdef BLUETOOTH_ENABLE
# include "outputselect.h"
#endif
#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
#endif
#ifdef FAUXCLICKY_ENABLE
# include "fauxclicky.h"
#endif
#ifdef API_ENABLE
# include "api.h"
#endif
#ifdef MIDI_ENABLE
# include "process_midi.h"
#endif
#ifdef VELOCIKEY_ENABLE
# include "velocikey.h"
#endif
#ifdef HAPTIC_ENABLE
# include "haptic.h"
#endif
#ifdef AUDIO_ENABLE
# ifndef GOODBYE_SONG
# define GOODBYE_SONG SONG(GOODBYE_SOUND)
# endif
float goodbye_song[][2] = GOODBYE_SONG;
# ifdef DEFAULT_LAYER_SONGS
float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
# endif
# ifdef SENDSTRING_BELL
float bell_song[][2] = SONG(TERMINAL_SOUND);
# endif
#endif
static void do_code16(uint16_t code, void (*f)(uint8_t)) {
switch (code) {
case QK_MODS ... QK_MODS_MAX:
break;
default:
return;
}
uint8_t mods_to_send = 0;
if (code & QK_RMODS_MIN) { // Right mod flag is set
if (code & QK_LCTL) mods_to_send |= MOD_BIT(KC_RCTL);
if (code & QK_LSFT) mods_to_send |= MOD_BIT(KC_RSFT);
if (code & QK_LALT) mods_to_send |= MOD_BIT(KC_RALT);
if (code & QK_LGUI) mods_to_send |= MOD_BIT(KC_RGUI);
} else {
if (code & QK_LCTL) mods_to_send |= MOD_BIT(KC_LCTL);
if (code & QK_LSFT) mods_to_send |= MOD_BIT(KC_LSFT);
if (code & QK_LALT) mods_to_send |= MOD_BIT(KC_LALT);
if (code & QK_LGUI) mods_to_send |= MOD_BIT(KC_LGUI);
}
f(mods_to_send);
}
void register_code16(uint16_t code) {
if (IS_MOD(code) || code == KC_NO) {
do_code16(code, register_mods);
} else {
do_code16(code, register_weak_mods);
}
register_code(code);
}
void unregister_code16(uint16_t code) {
unregister_code(code);
if (IS_MOD(code) || code == KC_NO) {
do_code16(code, unregister_mods);
} else {
do_code16(code, unregister_weak_mods);
}
}
void tap_code16(uint16_t code) {
register_code16(code);
#if TAP_CODE_DELAY > 0
wait_ms(TAP_CODE_DELAY);
#endif
unregister_code16(code);
}
__attribute__((weak)) bool process_action_kb(keyrecord_t *record) { return true; }
__attribute__((weak)) bool process_record_kb(uint16_t keycode, keyrecord_t *record) { return process_record_user(keycode, record); }
__attribute__((weak)) bool process_record_user(uint16_t keycode, keyrecord_t *record) { return true; }
__attribute__((weak)) void post_process_record_kb(uint16_t keycode, keyrecord_t *record) { post_process_record_user(keycode, record); }
__attribute__((weak)) void post_process_record_user(uint16_t keycode, keyrecord_t *record) {}
void reset_keyboard(void) {
clear_keyboard();
#if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
process_midi_all_notes_off();
#endif
#ifdef AUDIO_ENABLE
# ifndef NO_MUSIC_MODE
music_all_notes_off();
# endif
uint16_t timer_start = timer_read();
PLAY_SONG(goodbye_song);
shutdown_user();
while (timer_elapsed(timer_start) < 250) wait_ms(1);
stop_all_notes();
#else
shutdown_user();
wait_ms(250);
#endif
#ifdef HAPTIC_ENABLE
haptic_shutdown();
#endif
bootloader_jump();
}
/* Convert record into usable keycode via the contained event. */
uint16_t get_record_keycode(keyrecord_t *record, bool update_layer_cache) { return get_event_keycode(record->event, update_layer_cache); }
/* Convert event into usable keycode. Checks the layer cache to ensure that it
* retains the correct keycode after a layer change, if the key is still pressed.
* "update_layer_cache" is to ensure that it only updates the layer cache when
* appropriate, otherwise, it will update it and cause layer tap (and other keys)
* from triggering properly.
*/
uint16_t get_event_keycode(keyevent_t event, bool update_layer_cache) {
#if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
/* TODO: Use store_or_get_action() or a similar function. */
if (!disable_action_cache) {
uint8_t layer;
if (event.pressed && update_layer_cache) {
layer = layer_switch_get_layer(event.key);
update_source_layers_cache(event.key, layer);
} else {
layer = read_source_layers_cache(event.key);
}
return keymap_key_to_keycode(layer, event.key);
} else
#endif
return keymap_key_to_keycode(layer_switch_get_layer(event.key), event.key);
}
/* Get keycode, and then call keyboard function */
void post_process_record_quantum(keyrecord_t *record) {
uint16_t keycode = get_record_keycode(record, false);
post_process_record_kb(keycode, record);
}
/* Core keycode function, hands off handling to other functions,
then processes internal quantum keycodes, and then processes
ACTIONs. */
bool process_record_quantum(keyrecord_t *record) {
uint16_t keycode = get_record_keycode(record, true);
// This is how you use actions here
// if (keycode == KC_LEAD) {
// action_t action;
// action.code = ACTION_DEFAULT_LAYER_SET(0);
// process_action(record, action);
// return false;
// }
#ifdef VELOCIKEY_ENABLE
if (velocikey_enabled() && record->event.pressed) {
velocikey_accelerate();
}
#endif
#ifdef WPM_ENABLE
if (record->event.pressed) {
update_wpm(keycode);
}
#endif
#ifdef TAP_DANCE_ENABLE
preprocess_tap_dance(keycode, record);
#endif
if (!(
#if defined(KEY_LOCK_ENABLE)
// Must run first to be able to mask key_up events.
process_key_lock(&keycode, record) &&
#endif
#if defined(DYNAMIC_MACRO_ENABLE) && !defined(DYNAMIC_MACRO_USER_CALL)
// Must run asap to ensure all keypresses are recorded.
process_dynamic_macro(keycode, record) &&
#endif
#if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
process_clicky(keycode, record) &&
#endif // AUDIO_CLICKY
#ifdef HAPTIC_ENABLE
process_haptic(keycode, record) &&
#endif // HAPTIC_ENABLE
#if defined(RGB_MATRIX_ENABLE)
process_rgb_matrix(keycode, record) &&
#endif
#if defined(VIA_ENABLE)
process_record_via(keycode, record) &&
#endif
process_record_kb(keycode, record) &&
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
process_midi(keycode, record) &&
#endif
#ifdef AUDIO_ENABLE
process_audio(keycode, record) &&
#endif
#ifdef BACKLIGHT_ENABLE
process_backlight(keycode, record) &&
#endif
#ifdef STENO_ENABLE
process_steno(keycode, record) &&
#endif
#if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
process_music(keycode, record) &&
#endif
#ifdef TAP_DANCE_ENABLE
process_tap_dance(keycode, record) &&
#endif
#if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
process_unicode_common(keycode, record) &&
#endif
#ifdef LEADER_ENABLE
process_leader(keycode, record) &&
#endif
#ifdef COMBO_ENABLE
process_combo(keycode, record) &&
#endif
#ifdef PRINTING_ENABLE
process_printer(keycode, record) &&
#endif
#ifdef AUTO_SHIFT_ENABLE
process_auto_shift(keycode, record) &&
#endif
#ifdef TERMINAL_ENABLE
process_terminal(keycode, record) &&
#endif
#ifdef SPACE_CADET_ENABLE
process_space_cadet(keycode, record) &&
#endif
#ifdef MAGIC_KEYCODE_ENABLE
process_magic(keycode, record) &&
#endif
#ifdef GRAVE_ESC_ENABLE
process_grave_esc(keycode, record) &&
#endif
#if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
process_rgb(keycode, record) &&
#endif
#ifdef JOYSTICK_ENABLE
process_joystick(keycode, record) &&
#endif
true)) {
return false;
}
if (record->event.pressed) {
switch (keycode) {
#ifndef NO_RESET
case RESET:
reset_keyboard();
return false;
#endif
#ifndef NO_DEBUG
case DEBUG:
debug_enable ^= 1;
if (debug_enable) {
print("DEBUG: enabled.\n");
} else {
print("DEBUG: disabled.\n");
}
#endif
return false;
case EEPROM_RESET:
eeconfig_init();
return false;
#ifdef FAUXCLICKY_ENABLE
case FC_TOG:
FAUXCLICKY_TOGGLE;
return false;
case FC_ON:
FAUXCLICKY_ON;
return false;
case FC_OFF:
FAUXCLICKY_OFF;
return false;
#endif
#ifdef VELOCIKEY_ENABLE
case VLK_TOG:
velocikey_toggle();
return false;
#endif
#ifdef BLUETOOTH_ENABLE
case OUT_AUTO:
set_output(OUTPUT_AUTO);
return false;
case OUT_USB:
set_output(OUTPUT_USB);
return false;
case OUT_BT:
set_output(OUTPUT_BLUETOOTH);
return false;
#endif
}
}
return process_action_kb(record);
}
// clang-format off
/* Bit-Packed look-up table to convert an ASCII character to whether
* [Shift] needs to be sent with the keycode.
*/
__attribute__((weak)) const uint8_t ascii_to_shift_lut[16] PROGMEM = {
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 1, 1, 1, 1, 1, 1, 0),
KCLUT_ENTRY(1, 1, 1, 1, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 1, 0, 1, 0, 1, 1),
KCLUT_ENTRY(1, 1, 1, 1, 1, 1, 1, 1),
KCLUT_ENTRY(1, 1, 1, 1, 1, 1, 1, 1),
KCLUT_ENTRY(1, 1, 1, 1, 1, 1, 1, 1),
KCLUT_ENTRY(1, 1, 1, 0, 0, 0, 1, 1),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 1, 1, 1, 1, 0),
};
/* Bit-Packed look-up table to convert an ASCII character to whether
* [AltGr] needs to be sent with the keycode.
*/
__attribute__((weak)) const uint8_t ascii_to_altgr_lut[16] PROGMEM = {
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
KCLUT_ENTRY(0, 0, 0, 0, 0, 0, 0, 0),
};
/* Look-up table to convert an ASCII character to a keycode.
*/
__attribute__((weak)) const uint8_t ascii_to_keycode_lut[128] PROGMEM = {
// NUL SOH STX ETX EOT ENQ ACK BEL
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// BS TAB LF VT FF CR SO SI
KC_BSPC, KC_TAB, KC_ENT, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// DLE DC1 DC2 DC3 DC4 NAK SYN ETB
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// CAN EM SUB ESC FS GS RS US
XXXXXXX, XXXXXXX, XXXXXXX, KC_ESC, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// ! " # $ % & '
KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
// ( ) * + , - . /
KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
// 0 1 2 3 4 5 6 7
KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
// 8 9 : ; < = > ?
KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
// @ A B C D E F G
KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
// H I J K L M N O
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
// P Q R S T U V W
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
// X Y Z [ \ ] ^ _
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
// ` a b c d e f g
KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
// h i j k l m n o
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
// p q r s t u v w
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
// x y z { | } ~ DEL
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
};
// clang-format on
// Note: we bit-pack in "reverse" order to optimize loading
#define PGM_LOADBIT(mem, pos) ((pgm_read_byte(&((mem)[(pos) / 8])) >> ((pos) % 8)) & 0x01)
void send_string(const char *str) { send_string_with_delay(str, 0); }
void send_string_P(const char *str) { send_string_with_delay_P(str, 0); }
void send_string_with_delay(const char *str, uint8_t interval) {
while (1) {
char ascii_code = *str;
if (!ascii_code) break;
if (ascii_code == SS_QMK_PREFIX) {
ascii_code = *(++str);
if (ascii_code == SS_TAP_CODE) {
// tap
uint8_t keycode = *(++str);
tap_code(keycode);
} else if (ascii_code == SS_DOWN_CODE) {
// down
uint8_t keycode = *(++str);
register_code(keycode);
} else if (ascii_code == SS_UP_CODE) {
// up
uint8_t keycode = *(++str);
unregister_code(keycode);
} else if (ascii_code == SS_DELAY_CODE) {
// delay
int ms = 0;
uint8_t keycode = *(++str);
while (isdigit(keycode)) {
ms *= 10;
ms += keycode - '0';
keycode = *(++str);
}
while (ms--) wait_ms(1);
}
} else {
send_char(ascii_code);
}
++str;
// interval
{
uint8_t ms = interval;
while (ms--) wait_ms(1);
}
}
}
void send_string_with_delay_P(const char *str, uint8_t interval) {
while (1) {
char ascii_code = pgm_read_byte(str);
if (!ascii_code) break;
if (ascii_code == SS_QMK_PREFIX) {
ascii_code = pgm_read_byte(++str);
if (ascii_code == SS_TAP_CODE) {
// tap
uint8_t keycode = pgm_read_byte(++str);
tap_code(keycode);
} else if (ascii_code == SS_DOWN_CODE) {
// down
uint8_t keycode = pgm_read_byte(++str);
register_code(keycode);
} else if (ascii_code == SS_UP_CODE) {
// up
uint8_t keycode = pgm_read_byte(++str);
unregister_code(keycode);
} else if (ascii_code == SS_DELAY_CODE) {
// delay
int ms = 0;
uint8_t keycode = pgm_read_byte(++str);
while (isdigit(keycode)) {
ms *= 10;
ms += keycode - '0';
keycode = pgm_read_byte(++str);
}
while (ms--) wait_ms(1);
}
} else {
send_char(ascii_code);
}
++str;
// interval
{
uint8_t ms = interval;
while (ms--) wait_ms(1);
}
}
}
void send_char(char ascii_code) {
#if defined(AUDIO_ENABLE) && defined(SENDSTRING_BELL)
if (ascii_code == '\a') { // BEL
PLAY_SONG(bell_song);
return;
}
#endif
uint8_t keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
bool is_shifted = PGM_LOADBIT(ascii_to_shift_lut, (uint8_t)ascii_code);
bool is_altgred = PGM_LOADBIT(ascii_to_altgr_lut, (uint8_t)ascii_code);
if (is_shifted) {
register_code(KC_LSFT);
}
if (is_altgred) {
register_code(KC_RALT);
}
tap_code(keycode);
if (is_altgred) {
unregister_code(KC_RALT);
}
if (is_shifted) {
unregister_code(KC_LSFT);
}
}
void set_single_persistent_default_layer(uint8_t default_layer) {
#if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
PLAY_SONG(default_layer_songs[default_layer]);
#endif
eeconfig_update_default_layer(1U << default_layer);
default_layer_set(1U << default_layer);
}
layer_state_t update_tri_layer_state(layer_state_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
layer_state_t mask12 = (1UL << layer1) | (1UL << layer2);
layer_state_t mask3 = 1UL << layer3;
return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
}
void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3)); }
void tap_random_base64(void) {
#if defined(__AVR_ATmega32U4__)
uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
#else
uint8_t key = rand() % 64;
#endif
switch (key) {
case 0 ... 25:
register_code(KC_LSFT);
register_code(key + KC_A);
unregister_code(key + KC_A);
unregister_code(KC_LSFT);
break;
case 26 ... 51:
register_code(key - 26 + KC_A);
unregister_code(key - 26 + KC_A);
break;
case 52:
register_code(KC_0);
unregister_code(KC_0);
break;
case 53 ... 61:
register_code(key - 53 + KC_1);
unregister_code(key - 53 + KC_1);
break;
case 62:
register_code(KC_LSFT);
register_code(KC_EQL);
unregister_code(KC_EQL);
unregister_code(KC_LSFT);
break;
case 63:
register_code(KC_SLSH);
unregister_code(KC_SLSH);
break;
}
}
void matrix_init_quantum() {
#ifdef BOOTMAGIC_LITE
bootmagic_lite();
#endif
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
#if defined(LED_NUM_LOCK_PIN) || defined(LED_CAPS_LOCK_PIN) || defined(LED_SCROLL_LOCK_PIN) || defined(LED_COMPOSE_PIN) || defined(LED_KANA_PIN)
// TODO: remove calls to led_init_ports from keyboards and remove ifdef
led_init_ports();
#endif
#ifdef BACKLIGHT_ENABLE
# ifdef LED_MATRIX_ENABLE
led_matrix_init();
# else
backlight_init_ports();
# endif
#endif
#ifdef AUDIO_ENABLE
audio_init();
#endif
#ifdef RGB_MATRIX_ENABLE
rgb_matrix_init();
#endif
#if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
unicode_input_mode_init();
#endif
#ifdef HAPTIC_ENABLE
haptic_init();
#endif
#if defined(BLUETOOTH_ENABLE) && defined(OUTPUT_AUTO_ENABLE)
set_output(OUTPUT_AUTO);
#endif
matrix_init_kb();
}
void matrix_scan_quantum() {
#if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
matrix_scan_music();
#endif
#ifdef TAP_DANCE_ENABLE
matrix_scan_tap_dance();
#endif
#ifdef COMBO_ENABLE
matrix_scan_combo();
#endif
#ifdef LED_MATRIX_ENABLE
led_matrix_task();
#endif
#ifdef RGB_MATRIX_ENABLE
rgb_matrix_task();
#endif
#ifdef WPM_ENABLE
decay_wpm();
#endif
#ifdef HAPTIC_ENABLE
haptic_task();
#endif
#ifdef DIP_SWITCH_ENABLE
dip_switch_read(false);
#endif
matrix_scan_kb();
}
#ifdef HD44780_ENABLED
# include "hd44780.h"
#endif
// Functions for spitting out values
//
void send_dword(uint32_t number) {
uint16_t word = (number >> 16);
send_word(word);
send_word(number & 0xFFFFUL);
}
void send_word(uint16_t number) {
uint8_t byte = number >> 8;
send_byte(byte);
send_byte(number & 0xFF);
}
void send_byte(uint8_t number) {
uint8_t nibble = number >> 4;
send_nibble(nibble);
send_nibble(number & 0xF);
}
void send_nibble(uint8_t number) {
switch (number) {
case 0:
register_code(KC_0);
unregister_code(KC_0);
break;
case 1 ... 9:
register_code(KC_1 + (number - 1));
unregister_code(KC_1 + (number - 1));
break;
case 0xA ... 0xF:
register_code(KC_A + (number - 0xA));
unregister_code(KC_A + (number - 0xA));
break;
}
}
__attribute__((weak)) uint16_t hex_to_keycode(uint8_t hex) {
hex = hex & 0xF;
if (hex == 0x0) {
return KC_0;
} else if (hex < 0xA) {
return KC_1 + (hex - 0x1);
} else {
return KC_A + (hex - 0xA);
}
}
void api_send_unicode(uint32_t unicode) {
#ifdef API_ENABLE
uint8_t chunk[4];
dword_to_bytes(unicode, chunk);
MT_SEND_DATA(DT_UNICODE, chunk, 5);
#endif
}
//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// different events such as startup and bootloader jump
__attribute__((weak)) void startup_user() {}
__attribute__((weak)) void shutdown_user() {}