qmk_firmware/quantum/rgb_matrix.c

625 lines
23 KiB
C

/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
* Copyright 2018 Yiancar
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rgb_matrix.h"
#include "progmem.h"
#include "config.h"
#include "eeprom.h"
#include <string.h>
#include <math.h>
#include "lib/lib8tion/lib8tion.h"
#ifndef RGB_MATRIX_CENTER
const point_t k_rgb_matrix_center = {112, 32};
#else
const point_t k_rgb_matrix_center = RGB_MATRIX_CENTER;
#endif
__attribute__((weak)) RGB rgb_matrix_hsv_to_rgb(HSV hsv) { return hsv_to_rgb(hsv); }
// Generic effect runners
#include "rgb_matrix_runners/effect_runner_dx_dy_dist.h"
#include "rgb_matrix_runners/effect_runner_dx_dy.h"
#include "rgb_matrix_runners/effect_runner_i.h"
#include "rgb_matrix_runners/effect_runner_sin_cos_i.h"
#include "rgb_matrix_runners/effect_runner_reactive.h"
#include "rgb_matrix_runners/effect_runner_reactive_splash.h"
// ------------------------------------------
// -----Begin rgb effect includes macros-----
#define RGB_MATRIX_EFFECT(name)
#define RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#include "rgb_matrix_animations/rgb_matrix_effects.inc"
#ifdef RGB_MATRIX_CUSTOM_KB
# include "rgb_matrix_kb.inc"
#endif
#ifdef RGB_MATRIX_CUSTOM_USER
# include "rgb_matrix_user.inc"
#endif
#undef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#undef RGB_MATRIX_EFFECT
// -----End rgb effect includes macros-------
// ------------------------------------------
#if defined(RGB_DISABLE_AFTER_TIMEOUT) && !defined(RGB_DISABLE_TIMEOUT)
# define RGB_DISABLE_TIMEOUT (RGB_DISABLE_AFTER_TIMEOUT * 1200UL)
#endif
#ifndef RGB_DISABLE_TIMEOUT
# define RGB_DISABLE_TIMEOUT 0
#endif
#ifndef RGB_DISABLE_WHEN_USB_SUSPENDED
# define RGB_DISABLE_WHEN_USB_SUSPENDED false
#endif
#if !defined(RGB_MATRIX_MAXIMUM_BRIGHTNESS) || RGB_MATRIX_MAXIMUM_BRIGHTNESS > UINT8_MAX
# undef RGB_MATRIX_MAXIMUM_BRIGHTNESS
# define RGB_MATRIX_MAXIMUM_BRIGHTNESS UINT8_MAX
#endif
#if !defined(RGB_MATRIX_HUE_STEP)
# define RGB_MATRIX_HUE_STEP 8
#endif
#if !defined(RGB_MATRIX_SAT_STEP)
# define RGB_MATRIX_SAT_STEP 16
#endif
#if !defined(RGB_MATRIX_VAL_STEP)
# define RGB_MATRIX_VAL_STEP 16
#endif
#if !defined(RGB_MATRIX_SPD_STEP)
# define RGB_MATRIX_SPD_STEP 16
#endif
#if !defined(RGB_MATRIX_STARTUP_MODE)
# ifndef DISABLE_RGB_MATRIX_CYCLE_LEFT_RIGHT
# define RGB_MATRIX_STARTUP_MODE RGB_MATRIX_CYCLE_LEFT_RIGHT
# else
// fallback to solid colors if RGB_MATRIX_CYCLE_LEFT_RIGHT is disabled in userspace
# define RGB_MATRIX_STARTUP_MODE RGB_MATRIX_SOLID_COLOR
# endif
#endif
#if !defined(RGB_MATRIX_STARTUP_HUE)
# define RGB_MATRIX_STARTUP_HUE 0
#endif
#if !defined(RGB_MATRIX_STARTUP_SAT)
# define RGB_MATRIX_STARTUP_SAT UINT8_MAX
#endif
#if !defined(RGB_MATRIX_STARTUP_VAL)
# define RGB_MATRIX_STARTUP_VAL RGB_MATRIX_MAXIMUM_BRIGHTNESS
#endif
#if !defined(RGB_MATRIX_STARTUP_SPD)
# define RGB_MATRIX_STARTUP_SPD UINT8_MAX / 2
#endif
// globals
bool g_suspend_state = false;
rgb_config_t rgb_matrix_config; // TODO: would like to prefix this with g_ for global consistancy, do this in another pr
uint32_t g_rgb_timer;
#ifdef RGB_MATRIX_FRAMEBUFFER_EFFECTS
uint8_t g_rgb_frame_buffer[MATRIX_ROWS][MATRIX_COLS] = {{0}};
#endif // RGB_MATRIX_FRAMEBUFFER_EFFECTS
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
last_hit_t g_last_hit_tracker;
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED
// internals
static uint8_t rgb_last_enable = UINT8_MAX;
static uint8_t rgb_last_effect = UINT8_MAX;
static effect_params_t rgb_effect_params = {0, 0xFF};
static rgb_task_states rgb_task_state = SYNCING;
#if RGB_DISABLE_TIMEOUT > 0
static uint32_t rgb_anykey_timer;
#endif // RGB_DISABLE_TIMEOUT > 0
// double buffers
static uint32_t rgb_timer_buffer;
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
static last_hit_t last_hit_buffer;
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED
void eeconfig_read_rgb_matrix(void) { eeprom_read_block(&rgb_matrix_config, EECONFIG_RGB_MATRIX, sizeof(rgb_matrix_config)); }
void eeconfig_update_rgb_matrix(void) { eeprom_update_block(&rgb_matrix_config, EECONFIG_RGB_MATRIX, sizeof(rgb_matrix_config)); }
void eeconfig_update_rgb_matrix_default(void) {
dprintf("eeconfig_update_rgb_matrix_default\n");
rgb_matrix_config.enable = 1;
rgb_matrix_config.mode = RGB_MATRIX_STARTUP_MODE;
rgb_matrix_config.hsv = (HSV){RGB_MATRIX_STARTUP_HUE, RGB_MATRIX_STARTUP_SAT, RGB_MATRIX_STARTUP_VAL};
rgb_matrix_config.speed = RGB_MATRIX_STARTUP_SPD;
eeconfig_update_rgb_matrix();
}
void eeconfig_debug_rgb_matrix(void) {
dprintf("rgb_matrix_config EEPROM\n");
dprintf("rgb_matrix_config.enable = %d\n", rgb_matrix_config.enable);
dprintf("rgb_matrix_config.mode = %d\n", rgb_matrix_config.mode);
dprintf("rgb_matrix_config.hsv.h = %d\n", rgb_matrix_config.hsv.h);
dprintf("rgb_matrix_config.hsv.s = %d\n", rgb_matrix_config.hsv.s);
dprintf("rgb_matrix_config.hsv.v = %d\n", rgb_matrix_config.hsv.v);
dprintf("rgb_matrix_config.speed = %d\n", rgb_matrix_config.speed);
}
__attribute__((weak)) uint8_t rgb_matrix_map_row_column_to_led_kb(uint8_t row, uint8_t column, uint8_t *led_i) { return 0; }
uint8_t rgb_matrix_map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *led_i) {
uint8_t led_count = rgb_matrix_map_row_column_to_led_kb(row, column, led_i);
uint8_t led_index = g_led_config.matrix_co[row][column];
if (led_index != NO_LED) {
led_i[led_count] = led_index;
led_count++;
}
return led_count;
}
void rgb_matrix_update_pwm_buffers(void) { rgb_matrix_driver.flush(); }
void rgb_matrix_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { rgb_matrix_driver.set_color(index, red, green, blue); }
void rgb_matrix_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { rgb_matrix_driver.set_color_all(red, green, blue); }
bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record) {
#if RGB_DISABLE_TIMEOUT > 0
if (record->event.pressed) {
rgb_anykey_timer = 0;
}
#endif // RGB_DISABLE_TIMEOUT > 0
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
uint8_t led[LED_HITS_TO_REMEMBER];
uint8_t led_count = 0;
# if defined(RGB_MATRIX_KEYRELEASES)
if (!record->event.pressed)
# elif defined(RGB_MATRIX_KEYPRESSES)
if (record->event.pressed)
# endif // defined(RGB_MATRIX_KEYRELEASES)
{
led_count = rgb_matrix_map_row_column_to_led(record->event.key.row, record->event.key.col, led);
}
if (last_hit_buffer.count + led_count > LED_HITS_TO_REMEMBER) {
memcpy(&last_hit_buffer.x[0], &last_hit_buffer.x[led_count], LED_HITS_TO_REMEMBER - led_count);
memcpy(&last_hit_buffer.y[0], &last_hit_buffer.y[led_count], LED_HITS_TO_REMEMBER - led_count);
memcpy(&last_hit_buffer.tick[0], &last_hit_buffer.tick[led_count], (LED_HITS_TO_REMEMBER - led_count) * 2); // 16 bit
memcpy(&last_hit_buffer.index[0], &last_hit_buffer.index[led_count], LED_HITS_TO_REMEMBER - led_count);
last_hit_buffer.count--;
}
for (uint8_t i = 0; i < led_count; i++) {
uint8_t index = last_hit_buffer.count;
last_hit_buffer.x[index] = g_led_config.point[led[i]].x;
last_hit_buffer.y[index] = g_led_config.point[led[i]].y;
last_hit_buffer.index[index] = led[i];
last_hit_buffer.tick[index] = 0;
last_hit_buffer.count++;
}
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED
#if defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && !defined(DISABLE_RGB_MATRIX_TYPING_HEATMAP)
if (rgb_matrix_config.mode == RGB_MATRIX_TYPING_HEATMAP) {
process_rgb_matrix_typing_heatmap(record);
}
#endif // defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && !defined(DISABLE_RGB_MATRIX_TYPING_HEATMAP)
return true;
}
void rgb_matrix_test(void) {
// Mask out bits 4 and 5
// Increase the factor to make the test animation slower (and reduce to make it faster)
uint8_t factor = 10;
switch ((g_rgb_timer & (0b11 << factor)) >> factor) {
case 0: {
rgb_matrix_set_color_all(20, 0, 0);
break;
}
case 1: {
rgb_matrix_set_color_all(0, 20, 0);
break;
}
case 2: {
rgb_matrix_set_color_all(0, 0, 20);
break;
}
case 3: {
rgb_matrix_set_color_all(20, 20, 20);
break;
}
}
}
static bool rgb_matrix_none(effect_params_t *params) {
if (!params->init) {
return false;
}
rgb_matrix_set_color_all(0, 0, 0);
return false;
}
static void rgb_task_timers(void) {
#if defined(RGB_MATRIX_KEYREACTIVE_ENABLED) || RGB_DISABLE_TIMEOUT > 0
uint32_t deltaTime = sync_timer_elapsed32(rgb_timer_buffer);
#endif // defined(RGB_MATRIX_KEYREACTIVE_ENABLED) || RGB_DISABLE_TIMEOUT > 0
rgb_timer_buffer = sync_timer_read32();
// Update double buffer timers
#if RGB_DISABLE_TIMEOUT > 0
if (rgb_anykey_timer < UINT32_MAX) {
if (UINT32_MAX - deltaTime < rgb_anykey_timer) {
rgb_anykey_timer = UINT32_MAX;
} else {
rgb_anykey_timer += deltaTime;
}
}
#endif // RGB_DISABLE_TIMEOUT > 0
// Update double buffer last hit timers
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
uint8_t count = last_hit_buffer.count;
for (uint8_t i = 0; i < count; ++i) {
if (UINT16_MAX - deltaTime < last_hit_buffer.tick[i]) {
last_hit_buffer.count--;
continue;
}
last_hit_buffer.tick[i] += deltaTime;
}
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED
}
static void rgb_task_sync(void) {
// next task
if (sync_timer_elapsed32(g_rgb_timer) >= RGB_MATRIX_LED_FLUSH_LIMIT) rgb_task_state = STARTING;
}
static void rgb_task_start(void) {
// reset iter
rgb_effect_params.iter = 0;
// update double buffers
g_rgb_timer = rgb_timer_buffer;
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
g_last_hit_tracker = last_hit_buffer;
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED
// next task
rgb_task_state = RENDERING;
}
static void rgb_task_render(uint8_t effect) {
bool rendering = false;
rgb_effect_params.init = (effect != rgb_last_effect) || (rgb_matrix_config.enable != rgb_last_enable);
// each effect can opt to do calculations
// and/or request PWM buffer updates.
switch (effect) {
case RGB_MATRIX_NONE:
rendering = rgb_matrix_none(&rgb_effect_params);
break;
// ---------------------------------------------
// -----Begin rgb effect switch case macros-----
#define RGB_MATRIX_EFFECT(name, ...) \
case RGB_MATRIX_##name: \
rendering = name(&rgb_effect_params); \
break;
#include "rgb_matrix_animations/rgb_matrix_effects.inc"
#undef RGB_MATRIX_EFFECT
#if defined(RGB_MATRIX_CUSTOM_KB) || defined(RGB_MATRIX_CUSTOM_USER)
# define RGB_MATRIX_EFFECT(name, ...) \
case RGB_MATRIX_CUSTOM_##name: \
rendering = name(&rgb_effect_params); \
break;
# ifdef RGB_MATRIX_CUSTOM_KB
# include "rgb_matrix_kb.inc"
# endif
# ifdef RGB_MATRIX_CUSTOM_USER
# include "rgb_matrix_user.inc"
# endif
# undef RGB_MATRIX_EFFECT
#endif
// -----End rgb effect switch case macros-------
// ---------------------------------------------
// Factory default magic value
case UINT8_MAX: {
rgb_matrix_test();
rgb_task_state = FLUSHING;
}
return;
}
rgb_effect_params.iter++;
// next task
if (!rendering) {
rgb_task_state = FLUSHING;
if (!rgb_effect_params.init && effect == RGB_MATRIX_NONE) {
// We only need to flush once if we are RGB_MATRIX_NONE
rgb_task_state = SYNCING;
}
}
}
static void rgb_task_flush(uint8_t effect) {
// update last trackers after the first full render so we can init over several frames
rgb_last_effect = effect;
rgb_last_enable = rgb_matrix_config.enable;
// update pwm buffers
rgb_matrix_update_pwm_buffers();
// next task
rgb_task_state = SYNCING;
}
void rgb_matrix_task(void) {
rgb_task_timers();
// Ideally we would also stop sending zeros to the LED driver PWM buffers
// while suspended and just do a software shutdown. This is a cheap hack for now.
bool suspend_backlight =
#if RGB_DISABLE_WHEN_USB_SUSPENDED == true
g_suspend_state ||
#endif // RGB_DISABLE_WHEN_USB_SUSPENDED == true
#if RGB_DISABLE_TIMEOUT > 0
(rgb_anykey_timer > (uint32_t)RGB_DISABLE_TIMEOUT) ||
#endif // RGB_DISABLE_TIMEOUT > 0
false;
uint8_t effect = suspend_backlight || !rgb_matrix_config.enable ? 0 : rgb_matrix_config.mode;
switch (rgb_task_state) {
case STARTING:
rgb_task_start();
break;
case RENDERING:
rgb_task_render(effect);
if (!suspend_backlight) {
rgb_matrix_indicators();
rgb_matrix_indicators_advanced(&rgb_effect_params);
}
break;
case FLUSHING:
rgb_task_flush(effect);
break;
case SYNCING:
rgb_task_sync();
break;
}
}
void rgb_matrix_indicators(void) {
rgb_matrix_indicators_kb();
rgb_matrix_indicators_user();
}
__attribute__((weak)) void rgb_matrix_indicators_kb(void) {}
__attribute__((weak)) void rgb_matrix_indicators_user(void) {}
void rgb_matrix_indicators_advanced(effect_params_t *params) {
/* special handling is needed for "params->iter", since it's already been incremented.
* Could move the invocations to rgb_task_render, but then it's missing a few checks
* and not sure which would be better. Otherwise, this should be called from
* rgb_task_render, right before the iter++ line.
*/
#if defined(RGB_MATRIX_LED_PROCESS_LIMIT) && RGB_MATRIX_LED_PROCESS_LIMIT > 0 && RGB_MATRIX_LED_PROCESS_LIMIT < DRIVER_LED_TOTAL
uint8_t min = RGB_MATRIX_LED_PROCESS_LIMIT * (params->iter - 1);
uint8_t max = min + RGB_MATRIX_LED_PROCESS_LIMIT;
if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL;
#else
uint8_t min = 0;
uint8_t max = DRIVER_LED_TOTAL;
#endif
rgb_matrix_indicators_advanced_kb(min, max);
rgb_matrix_indicators_advanced_user(min, max);
}
__attribute__((weak)) void rgb_matrix_indicators_advanced_kb(uint8_t led_min, uint8_t led_max) {}
__attribute__((weak)) void rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {}
void rgb_matrix_init(void) {
rgb_matrix_driver.init();
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
g_last_hit_tracker.count = 0;
for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) {
g_last_hit_tracker.tick[i] = UINT16_MAX;
}
last_hit_buffer.count = 0;
for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) {
last_hit_buffer.tick[i] = UINT16_MAX;
}
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED
if (!eeconfig_is_enabled()) {
dprintf("rgb_matrix_init_drivers eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_update_rgb_matrix_default();
}
eeconfig_read_rgb_matrix();
if (!rgb_matrix_config.mode) {
dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_rgb_matrix_default();
}
eeconfig_debug_rgb_matrix(); // display current eeprom values
}
void rgb_matrix_set_suspend_state(bool state) {
if (RGB_DISABLE_WHEN_USB_SUSPENDED && state) {
rgb_matrix_set_color_all(0, 0, 0); // turn off all LEDs when suspending
}
g_suspend_state = state;
}
bool rgb_matrix_get_suspend_state(void) { return g_suspend_state; }
void rgb_matrix_toggle_eeprom_helper(bool write_to_eeprom) {
rgb_matrix_config.enable ^= 1;
rgb_task_state = STARTING;
if (write_to_eeprom) {
eeconfig_update_rgb_matrix();
}
dprintf("rgb matrix toggle [%s]: rgb_matrix_config.enable = %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.enable);
}
void rgb_matrix_toggle_noeeprom(void) { rgb_matrix_toggle_eeprom_helper(false); }
void rgb_matrix_toggle(void) { rgb_matrix_toggle_eeprom_helper(true); }
void rgb_matrix_enable(void) {
rgb_matrix_enable_noeeprom();
eeconfig_update_rgb_matrix();
}
void rgb_matrix_enable_noeeprom(void) {
if (!rgb_matrix_config.enable) rgb_task_state = STARTING;
rgb_matrix_config.enable = 1;
}
void rgb_matrix_disable(void) {
rgb_matrix_disable_noeeprom();
eeconfig_update_rgb_matrix();
}
void rgb_matrix_disable_noeeprom(void) {
if (rgb_matrix_config.enable) rgb_task_state = STARTING;
rgb_matrix_config.enable = 0;
}
uint8_t rgb_matrix_is_enabled(void) { return rgb_matrix_config.enable; }
void rgb_matrix_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) {
if (!rgb_matrix_config.enable) {
return;
}
if (mode < 1) {
rgb_matrix_config.mode = 1;
} else if (mode >= RGB_MATRIX_EFFECT_MAX) {
rgb_matrix_config.mode = RGB_MATRIX_EFFECT_MAX - 1;
} else {
rgb_matrix_config.mode = mode;
}
rgb_task_state = STARTING;
if (write_to_eeprom) {
eeconfig_update_rgb_matrix();
}
dprintf("rgb matrix mode [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.mode);
}
void rgb_matrix_mode_noeeprom(uint8_t mode) { rgb_matrix_mode_eeprom_helper(mode, false); }
void rgb_matrix_mode(uint8_t mode) { rgb_matrix_mode_eeprom_helper(mode, true); }
uint8_t rgb_matrix_get_mode(void) { return rgb_matrix_config.mode; }
void rgb_matrix_step_helper(bool write_to_eeprom) {
uint8_t mode = rgb_matrix_config.mode + 1;
rgb_matrix_mode_eeprom_helper((mode < RGB_MATRIX_EFFECT_MAX) ? mode : 1, write_to_eeprom);
}
void rgb_matrix_step_noeeprom(void) { rgb_matrix_step_helper(false); }
void rgb_matrix_step(void) { rgb_matrix_step_helper(true); }
void rgb_matrix_step_reverse_helper(bool write_to_eeprom) {
uint8_t mode = rgb_matrix_config.mode - 1;
rgb_matrix_mode_eeprom_helper((mode < 1) ? RGB_MATRIX_EFFECT_MAX - 1 : mode, write_to_eeprom);
}
void rgb_matrix_step_reverse_noeeprom(void) { rgb_matrix_step_reverse_helper(false); }
void rgb_matrix_step_reverse(void) { rgb_matrix_step_reverse_helper(true); }
void rgb_matrix_sethsv_eeprom_helper(uint16_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) {
if (!rgb_matrix_config.enable) {
return;
}
rgb_matrix_config.hsv.h = hue;
rgb_matrix_config.hsv.s = sat;
rgb_matrix_config.hsv.v = (val > RGB_MATRIX_MAXIMUM_BRIGHTNESS) ? RGB_MATRIX_MAXIMUM_BRIGHTNESS : val;
if (write_to_eeprom) {
eeconfig_update_rgb_matrix();
}
dprintf("rgb matrix set hsv [%s]: %u,%u,%u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.hsv.h, rgb_matrix_config.hsv.s, rgb_matrix_config.hsv.v);
}
void rgb_matrix_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val) { rgb_matrix_sethsv_eeprom_helper(hue, sat, val, false); }
void rgb_matrix_sethsv(uint16_t hue, uint8_t sat, uint8_t val) { rgb_matrix_sethsv_eeprom_helper(hue, sat, val, true); }
HSV rgb_matrix_get_hsv(void) { return rgb_matrix_config.hsv; }
uint8_t rgb_matrix_get_hue(void) { return rgb_matrix_config.hsv.h; }
uint8_t rgb_matrix_get_sat(void) { return rgb_matrix_config.hsv.s; }
uint8_t rgb_matrix_get_val(void) { return rgb_matrix_config.hsv.v; }
void rgb_matrix_increase_hue_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h + RGB_MATRIX_HUE_STEP, rgb_matrix_config.hsv.s, rgb_matrix_config.hsv.v, write_to_eeprom); }
void rgb_matrix_increase_hue_noeeprom(void) { rgb_matrix_increase_hue_helper(false); }
void rgb_matrix_increase_hue(void) { rgb_matrix_increase_hue_helper(true); }
void rgb_matrix_decrease_hue_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h - RGB_MATRIX_HUE_STEP, rgb_matrix_config.hsv.s, rgb_matrix_config.hsv.v, write_to_eeprom); }
void rgb_matrix_decrease_hue_noeeprom(void) { rgb_matrix_decrease_hue_helper(false); }
void rgb_matrix_decrease_hue(void) { rgb_matrix_decrease_hue_helper(true); }
void rgb_matrix_increase_sat_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, qadd8(rgb_matrix_config.hsv.s, RGB_MATRIX_SAT_STEP), rgb_matrix_config.hsv.v, write_to_eeprom); }
void rgb_matrix_increase_sat_noeeprom(void) { rgb_matrix_increase_sat_helper(false); }
void rgb_matrix_increase_sat(void) { rgb_matrix_increase_sat_helper(true); }
void rgb_matrix_decrease_sat_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, qsub8(rgb_matrix_config.hsv.s, RGB_MATRIX_SAT_STEP), rgb_matrix_config.hsv.v, write_to_eeprom); }
void rgb_matrix_decrease_sat_noeeprom(void) { rgb_matrix_decrease_sat_helper(false); }
void rgb_matrix_decrease_sat(void) { rgb_matrix_decrease_sat_helper(true); }
void rgb_matrix_increase_val_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, rgb_matrix_config.hsv.s, qadd8(rgb_matrix_config.hsv.v, RGB_MATRIX_VAL_STEP), write_to_eeprom); }
void rgb_matrix_increase_val_noeeprom(void) { rgb_matrix_increase_val_helper(false); }
void rgb_matrix_increase_val(void) { rgb_matrix_increase_val_helper(true); }
void rgb_matrix_decrease_val_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, rgb_matrix_config.hsv.s, qsub8(rgb_matrix_config.hsv.v, RGB_MATRIX_VAL_STEP), write_to_eeprom); }
void rgb_matrix_decrease_val_noeeprom(void) { rgb_matrix_decrease_val_helper(false); }
void rgb_matrix_decrease_val(void) { rgb_matrix_decrease_val_helper(true); }
void rgb_matrix_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) {
rgb_matrix_config.speed = speed;
if (write_to_eeprom) {
eeconfig_update_rgb_matrix();
}
dprintf("rgb matrix set speed [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.speed);
}
void rgb_matrix_set_speed_noeeprom(uint8_t speed) { rgb_matrix_set_speed_eeprom_helper(speed, false); }
void rgb_matrix_set_speed(uint8_t speed) { rgb_matrix_set_speed_eeprom_helper(speed, true); }
uint8_t rgb_matrix_get_speed(void) { return rgb_matrix_config.speed; }
void rgb_matrix_increase_speed_helper(bool write_to_eeprom) { rgb_matrix_set_speed_eeprom_helper(qadd8(rgb_matrix_config.speed, RGB_MATRIX_SPD_STEP), write_to_eeprom); }
void rgb_matrix_increase_speed_noeeprom(void) { rgb_matrix_increase_speed_helper(false); }
void rgb_matrix_increase_speed(void) { rgb_matrix_increase_speed_helper(true); }
void rgb_matrix_decrease_speed_helper(bool write_to_eeprom) { rgb_matrix_set_speed_eeprom_helper(qsub8(rgb_matrix_config.speed, RGB_MATRIX_SPD_STEP), write_to_eeprom); }
void rgb_matrix_decrease_speed_noeeprom(void) { rgb_matrix_decrease_speed_helper(false); }
void rgb_matrix_decrease_speed(void) { rgb_matrix_decrease_speed_helper(true); }
led_flags_t rgb_matrix_get_flags(void) { return rgb_effect_params.flags; }
void rgb_matrix_set_flags(led_flags_t flags) { rgb_effect_params.flags = flags; }