qmk_firmware/keyboards/mxss/rgblight.c

1396 lines
48 KiB
C

/* Copyright 2016-2017 Yang Liu
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#ifdef __AVR__
# include <avr/eeprom.h>
# include <avr/interrupt.h>
#endif
#ifdef EEPROM_ENABLE
# include "eeprom.h"
#endif
#ifdef STM32_EEPROM_ENABLE
# include <hal.h>
# include "eeprom_stm32.h"
#endif
#include "wait.h"
#include "progmem.h"
#include "timer.h"
#include "rgblight.h"
#include "color.h"
#include "debug.h"
#include "led_tables.h"
#include <lib/lib8tion/lib8tion.h>
#ifdef VELOCIKEY_ENABLE
# include "velocikey.h"
#endif
// MxSS custom
#include "mxss_frontled.h"
#ifndef MIN
# define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
#ifdef RGBLIGHT_SPLIT
/* for split keyboard */
# define RGBLIGHT_SPLIT_SET_CHANGE_MODE rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_MODE
# define RGBLIGHT_SPLIT_SET_CHANGE_HSVS rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_HSVS
# define RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS rgblight_status.change_flags |= (RGBLIGHT_STATUS_CHANGE_MODE | RGBLIGHT_STATUS_CHANGE_HSVS)
# define RGBLIGHT_SPLIT_SET_CHANGE_LAYERS rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_LAYERS
# define RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_TIMER
# define RGBLIGHT_SPLIT_ANIMATION_TICK rgblight_status.change_flags |= RGBLIGHT_STATUS_ANIMATION_TICK
#else
# define RGBLIGHT_SPLIT_SET_CHANGE_MODE
# define RGBLIGHT_SPLIT_SET_CHANGE_HSVS
# define RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS
# define RGBLIGHT_SPLIT_SET_CHANGE_LAYERS
# define RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE
# define RGBLIGHT_SPLIT_ANIMATION_TICK
#endif
#define _RGBM_SINGLE_STATIC(sym) RGBLIGHT_MODE_##sym,
#define _RGBM_SINGLE_DYNAMIC(sym)
#define _RGBM_MULTI_STATIC(sym) RGBLIGHT_MODE_##sym,
#define _RGBM_MULTI_DYNAMIC(sym)
#define _RGBM_TMP_STATIC(sym, msym) RGBLIGHT_MODE_##sym,
#define _RGBM_TMP_DYNAMIC(sym, msym)
static uint8_t static_effect_table[] = {
#include "rgblight_modes.h"
};
#define _RGBM_SINGLE_STATIC(sym) RGBLIGHT_MODE_##sym,
#define _RGBM_SINGLE_DYNAMIC(sym) RGBLIGHT_MODE_##sym,
#define _RGBM_MULTI_STATIC(sym) RGBLIGHT_MODE_##sym,
#define _RGBM_MULTI_DYNAMIC(sym) RGBLIGHT_MODE_##sym,
#define _RGBM_TMP_STATIC(sym, msym) RGBLIGHT_MODE_##msym,
#define _RGBM_TMP_DYNAMIC(sym, msym) RGBLIGHT_MODE_##msym,
static uint8_t mode_base_table[] = {
0, // RGBLIGHT_MODE_zero
#include "rgblight_modes.h"
};
static inline int is_static_effect(uint8_t mode) { return memchr(static_effect_table, mode, sizeof(static_effect_table)) != NULL; }
#ifdef RGBLIGHT_LED_MAP
const uint8_t led_map[] PROGMEM = RGBLIGHT_LED_MAP;
#endif
#ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
__attribute__((weak)) const uint8_t RGBLED_GRADIENT_RANGES[] PROGMEM = {255, 170, 127, 85, 64};
#endif
rgblight_config_t rgblight_config;
rgblight_status_t rgblight_status = {.timer_enabled = false};
bool is_rgblight_initialized = false;
#ifdef RGBLIGHT_USE_TIMER
animation_status_t animation_status = {};
#endif
#ifndef LED_ARRAY
LED_TYPE led[RGBLED_NUM];
# define LED_ARRAY led
#endif
#ifdef RGBLIGHT_LAYERS
rgblight_segment_t const *const *rgblight_layers = NULL;
#endif
rgblight_ranges_t rgblight_ranges = {0, RGBLED_NUM, 0, RGBLED_NUM, RGBLED_NUM};
// MxSS custom
extern uint8_t fled_mode;
extern uint8_t fled_val;
extern LED_TYPE fleds[2];
hs_set fled_hs[2];
void copyrgb(LED_TYPE *src, LED_TYPE *dst) {
dst->r = src->r;
dst->g = src->g;
dst->b = src->b;
}
void rgblight_set_clipping_range(uint8_t start_pos, uint8_t num_leds) {
rgblight_ranges.clipping_start_pos = start_pos;
rgblight_ranges.clipping_num_leds = num_leds;
}
void rgblight_set_effect_range(uint8_t start_pos, uint8_t num_leds) {
if (start_pos >= RGBLED_NUM) return;
if (start_pos + num_leds > RGBLED_NUM) return;
rgblight_ranges.effect_start_pos = start_pos;
rgblight_ranges.effect_end_pos = start_pos + num_leds;
rgblight_ranges.effect_num_leds = num_leds;
}
__attribute__((weak)) RGB rgblight_hsv_to_rgb(HSV hsv) { return hsv_to_rgb(hsv); }
void sethsv_raw(uint8_t hue, uint8_t sat, uint8_t val, LED_TYPE *led1) {
HSV hsv = {hue, sat, val};
// MxSS custom
// if led is front leds, cache the hue and sat values
if (led1 == &led[RGBLIGHT_FLED1]) {
fled_hs[0].hue = hue;
fled_hs[0].sat = sat;
} else if (led1 == &led[RGBLIGHT_FLED2]) {
fled_hs[1].hue = hue;
fled_hs[1].sat = sat;
}
RGB rgb = rgblight_hsv_to_rgb(hsv);
setrgb(rgb.r, rgb.g, rgb.b, led1);
}
void sethsv(uint8_t hue, uint8_t sat, uint8_t val, LED_TYPE *led1) { sethsv_raw(hue, sat, val > RGBLIGHT_LIMIT_VAL ? RGBLIGHT_LIMIT_VAL : val, led1); }
void setrgb(uint8_t r, uint8_t g, uint8_t b, LED_TYPE *led1) {
led1->r = r;
led1->g = g;
led1->b = b;
#ifdef RGBW
led1->w = 0;
#endif
}
void rgblight_check_config(void) {
/* Add some out of bound checks for RGB light config */
if (rgblight_config.mode < RGBLIGHT_MODE_STATIC_LIGHT) {
rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT;
} else if (rgblight_config.mode > RGBLIGHT_MODES) {
rgblight_config.mode = RGBLIGHT_MODES;
}
if (rgblight_config.val > RGBLIGHT_LIMIT_VAL) {
rgblight_config.val = RGBLIGHT_LIMIT_VAL;
}
}
uint32_t eeconfig_read_rgblight(void) {
#ifdef EEPROM_ENABLE
return eeprom_read_dword(EECONFIG_RGBLIGHT);
#else
return 0;
#endif
}
void eeconfig_update_rgblight(uint32_t val) {
#ifdef EEPROM_ENABLE
rgblight_check_config();
eeprom_update_dword(EECONFIG_RGBLIGHT, val);
#endif
}
void eeconfig_update_rgblight_current(void) { eeconfig_update_rgblight(rgblight_config.raw); }
void eeconfig_update_rgblight_default(void) {
rgblight_config.enable = 1;
rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT;
rgblight_config.hue = 0;
rgblight_config.sat = UINT8_MAX;
rgblight_config.val = RGBLIGHT_LIMIT_VAL;
rgblight_config.speed = 0;
RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS;
eeconfig_update_rgblight(rgblight_config.raw);
}
void eeconfig_debug_rgblight(void) {
dprintf("rgblight_config EEPROM:\n");
dprintf("rgblight_config.enable = %d\n", rgblight_config.enable);
dprintf("rghlight_config.mode = %d\n", rgblight_config.mode);
dprintf("rgblight_config.hue = %d\n", rgblight_config.hue);
dprintf("rgblight_config.sat = %d\n", rgblight_config.sat);
dprintf("rgblight_config.val = %d\n", rgblight_config.val);
dprintf("rgblight_config.speed = %d\n", rgblight_config.speed);
}
void rgblight_init(void) {
/* if already initialized, don't do it again.
If you must do it again, extern this and set to false, first.
This is a dirty, dirty hack until proper hooks can be added for keyboard startup. */
if (is_rgblight_initialized) {
return;
}
dprintf("rgblight_init called.\n");
dprintf("rgblight_init start!\n");
if (!eeconfig_is_enabled()) {
dprintf("rgblight_init eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_update_rgblight_default();
}
rgblight_config.raw = eeconfig_read_rgblight();
RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS;
if (!rgblight_config.mode) {
dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_rgblight_default();
rgblight_config.raw = eeconfig_read_rgblight();
}
rgblight_check_config();
eeconfig_debug_rgblight(); // display current eeprom values
rgblight_timer_init(); // setup the timer
if (rgblight_config.enable) {
rgblight_mode_noeeprom(rgblight_config.mode);
}
is_rgblight_initialized = true;
}
uint32_t rgblight_read_dword(void) { return rgblight_config.raw; }
void rgblight_update_dword(uint32_t dword) {
RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS;
rgblight_config.raw = dword;
if (rgblight_config.enable)
rgblight_mode_noeeprom(rgblight_config.mode);
else {
rgblight_timer_disable();
rgblight_set();
}
}
void rgblight_increase(void) {
uint8_t mode = 0;
if (rgblight_config.mode < RGBLIGHT_MODES) {
mode = rgblight_config.mode + 1;
}
rgblight_mode(mode);
}
void rgblight_decrease(void) {
uint8_t mode = 0;
// Mode will never be < 1. If it ever is, eeprom needs to be initialized.
if (rgblight_config.mode > RGBLIGHT_MODE_STATIC_LIGHT) {
mode = rgblight_config.mode - 1;
}
rgblight_mode(mode);
}
void rgblight_step_helper(bool write_to_eeprom) {
uint8_t mode = 0;
mode = rgblight_config.mode + 1;
if (mode > RGBLIGHT_MODES) {
mode = 1;
}
rgblight_mode_eeprom_helper(mode, write_to_eeprom);
}
void rgblight_step_noeeprom(void) { rgblight_step_helper(false); }
void rgblight_step(void) { rgblight_step_helper(true); }
void rgblight_step_reverse_helper(bool write_to_eeprom) {
uint8_t mode = 0;
mode = rgblight_config.mode - 1;
if (mode < 1) {
mode = RGBLIGHT_MODES;
}
rgblight_mode_eeprom_helper(mode, write_to_eeprom);
}
void rgblight_step_reverse_noeeprom(void) { rgblight_step_reverse_helper(false); }
void rgblight_step_reverse(void) { rgblight_step_reverse_helper(true); }
uint8_t rgblight_get_mode(void) {
if (!rgblight_config.enable) {
return false;
}
return rgblight_config.mode;
}
void rgblight_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) {
if (!rgblight_config.enable) {
return;
}
if (mode < RGBLIGHT_MODE_STATIC_LIGHT) {
rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT;
} else if (mode > RGBLIGHT_MODES) {
rgblight_config.mode = RGBLIGHT_MODES;
} else {
rgblight_config.mode = mode;
}
RGBLIGHT_SPLIT_SET_CHANGE_MODE;
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw);
dprintf("rgblight mode [EEPROM]: %u\n", rgblight_config.mode);
} else {
dprintf("rgblight mode [NOEEPROM]: %u\n", rgblight_config.mode);
}
if (is_static_effect(rgblight_config.mode)) {
rgblight_timer_disable();
} else {
rgblight_timer_enable();
}
#ifdef RGBLIGHT_USE_TIMER
animation_status.restart = true;
#endif
rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_mode(uint8_t mode) { rgblight_mode_eeprom_helper(mode, true); }
void rgblight_mode_noeeprom(uint8_t mode) { rgblight_mode_eeprom_helper(mode, false); }
void rgblight_toggle(void) {
dprintf("rgblight toggle [EEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable);
if (rgblight_config.enable) {
rgblight_disable();
} else {
rgblight_enable();
}
}
void rgblight_toggle_noeeprom(void) {
dprintf("rgblight toggle [NOEEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable);
if (rgblight_config.enable) {
rgblight_disable_noeeprom();
} else {
rgblight_enable_noeeprom();
}
}
void rgblight_enable(void) {
rgblight_config.enable = 1;
// No need to update EEPROM here. rgblight_mode() will do that, actually
// eeconfig_update_rgblight(rgblight_config.raw);
dprintf("rgblight enable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
rgblight_mode(rgblight_config.mode);
}
void rgblight_enable_noeeprom(void) {
rgblight_config.enable = 1;
dprintf("rgblight enable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
rgblight_mode_noeeprom(rgblight_config.mode);
}
void rgblight_disable(void) {
rgblight_config.enable = 0;
eeconfig_update_rgblight(rgblight_config.raw);
dprintf("rgblight disable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
rgblight_timer_disable();
RGBLIGHT_SPLIT_SET_CHANGE_MODE;
wait_ms(50);
rgblight_set();
}
void rgblight_disable_noeeprom(void) {
rgblight_config.enable = 0;
dprintf("rgblight disable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
rgblight_timer_disable();
RGBLIGHT_SPLIT_SET_CHANGE_MODE;
wait_ms(50);
rgblight_set();
}
bool rgblight_is_enabled(void) { return rgblight_config.enable; }
void rgblight_increase_hue_helper(bool write_to_eeprom) {
uint8_t hue = rgblight_config.hue + RGBLIGHT_HUE_STEP;
rgblight_sethsv_eeprom_helper(hue, rgblight_config.sat, rgblight_config.val, write_to_eeprom);
}
void rgblight_increase_hue_noeeprom(void) { rgblight_increase_hue_helper(false); }
void rgblight_increase_hue(void) { rgblight_increase_hue_helper(true); }
void rgblight_decrease_hue_helper(bool write_to_eeprom) {
uint8_t hue = rgblight_config.hue - RGBLIGHT_HUE_STEP;
rgblight_sethsv_eeprom_helper(hue, rgblight_config.sat, rgblight_config.val, write_to_eeprom);
}
void rgblight_decrease_hue_noeeprom(void) { rgblight_decrease_hue_helper(false); }
void rgblight_decrease_hue(void) { rgblight_decrease_hue_helper(true); }
void rgblight_increase_sat_helper(bool write_to_eeprom) {
uint8_t sat = qadd8(rgblight_config.sat, RGBLIGHT_SAT_STEP);
rgblight_sethsv_eeprom_helper(rgblight_config.hue, sat, rgblight_config.val, write_to_eeprom);
}
void rgblight_increase_sat_noeeprom(void) { rgblight_increase_sat_helper(false); }
void rgblight_increase_sat(void) { rgblight_increase_sat_helper(true); }
void rgblight_decrease_sat_helper(bool write_to_eeprom) {
uint8_t sat = qsub8(rgblight_config.sat, RGBLIGHT_SAT_STEP);
rgblight_sethsv_eeprom_helper(rgblight_config.hue, sat, rgblight_config.val, write_to_eeprom);
}
void rgblight_decrease_sat_noeeprom(void) { rgblight_decrease_sat_helper(false); }
void rgblight_decrease_sat(void) { rgblight_decrease_sat_helper(true); }
void rgblight_increase_val_helper(bool write_to_eeprom) {
uint8_t val = qadd8(rgblight_config.val, RGBLIGHT_VAL_STEP);
rgblight_sethsv_eeprom_helper(rgblight_config.hue, rgblight_config.sat, val, write_to_eeprom);
}
void rgblight_increase_val_noeeprom(void) { rgblight_increase_val_helper(false); }
void rgblight_increase_val(void) { rgblight_increase_val_helper(true); }
void rgblight_decrease_val_helper(bool write_to_eeprom) {
uint8_t val = qsub8(rgblight_config.val, RGBLIGHT_VAL_STEP);
rgblight_sethsv_eeprom_helper(rgblight_config.hue, rgblight_config.sat, val, write_to_eeprom);
}
void rgblight_decrease_val_noeeprom(void) { rgblight_decrease_val_helper(false); }
void rgblight_decrease_val(void) { rgblight_decrease_val_helper(true); }
void rgblight_increase_speed_helper(bool write_to_eeprom) {
if (rgblight_config.speed < 3) rgblight_config.speed++;
// RGBLIGHT_SPLIT_SET_CHANGE_HSVS; // NEED?
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw); // EECONFIG needs to be increased to support this
}
}
void rgblight_increase_speed(void) { rgblight_increase_speed_helper(true); }
void rgblight_increase_speed_noeeprom(void) { rgblight_increase_speed_helper(false); }
void rgblight_decrease_speed_helper(bool write_to_eeprom) {
if (rgblight_config.speed > 0) rgblight_config.speed--;
// RGBLIGHT_SPLIT_SET_CHANGE_HSVS; // NEED??
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw); // EECONFIG needs to be increased to support this
}
}
void rgblight_decrease_speed(void) { rgblight_decrease_speed_helper(true); }
void rgblight_decrease_speed_noeeprom(void) { rgblight_decrease_speed_helper(false); }
void rgblight_sethsv_noeeprom_old(uint8_t hue, uint8_t sat, uint8_t val) {
if (rgblight_config.enable) {
// MxSS custom code
fled_hs[0].hue = fled_hs[1].hue = hue;
fled_hs[0].sat = fled_hs[1].sat = sat;
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
}
}
void rgblight_sethsv_eeprom_helper(uint8_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) {
if (rgblight_config.enable) {
rgblight_status.base_mode = mode_base_table[rgblight_config.mode];
if (rgblight_config.mode == RGBLIGHT_MODE_STATIC_LIGHT) {
// same static color
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
// MxSS custom
// Cache hue/sat for rgb
fled_hs[0].hue = fled_hs[1].hue = hue;
fled_hs[0].sat = fled_hs[1].sat = sat;
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
} else {
// all LEDs in same color
if (1 == 0) { // dummy
}
#ifdef RGBLIGHT_EFFECT_BREATHING
else if (rgblight_status.base_mode == RGBLIGHT_MODE_BREATHING) {
// breathing mode, ignore the change of val, use in memory value instead
val = rgblight_config.val;
}
#endif
#ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_MOOD) {
// rainbow mood, ignore the change of hue
hue = rgblight_config.hue;
}
#endif
#ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_SWIRL) {
// rainbow swirl, ignore the change of hue
hue = rgblight_config.hue;
}
#endif
#ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
else if (rgblight_status.base_mode == RGBLIGHT_MODE_STATIC_GRADIENT) {
// static gradient
uint8_t delta = rgblight_config.mode - rgblight_status.base_mode;
bool direction = (delta % 2) == 0;
# ifdef __AVR__
// probably due to how pgm_read_word is defined for ARM, but the ARM compiler really hates this line
uint8_t range = pgm_read_word(&RGBLED_GRADIENT_RANGES[delta / 2]);
# else
uint8_t range = RGBLED_GRADIENT_RANGES[delta / 2];
# endif
for (uint8_t i = 0; i < rgblight_ranges.effect_num_leds; i++) {
uint8_t _hue = ((uint16_t)i * (uint16_t)range) / rgblight_ranges.effect_num_leds;
if (direction) {
_hue = hue + _hue;
} else {
_hue = hue - _hue;
}
dprintf("rgblight rainbow set hsv: %d,%d,%d,%u\n", i, _hue, direction, range);
sethsv(_hue, sat, val, (LED_TYPE *)&led[i + rgblight_ranges.effect_start_pos]);
}
rgblight_set();
}
#endif
}
#ifdef RGBLIGHT_SPLIT
if (rgblight_config.hue != hue || rgblight_config.sat != sat || rgblight_config.val != val) {
RGBLIGHT_SPLIT_SET_CHANGE_HSVS;
}
#endif
rgblight_config.hue = hue;
rgblight_config.sat = sat;
rgblight_config.val = val;
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw);
dprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
} else {
dprintf("rgblight set hsv [NOEEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
}
}
}
void rgblight_sethsv(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_eeprom_helper(hue, sat, val, true); }
void rgblight_sethsv_noeeprom(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_eeprom_helper(hue, sat, val, false); }
uint8_t rgblight_get_speed(void) { return rgblight_config.speed; }
void rgblight_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) {
rgblight_config.speed = speed;
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw); // EECONFIG needs to be increased to support this
dprintf("rgblight set speed [EEPROM]: %u\n", rgblight_config.speed);
} else {
dprintf("rgblight set speed [NOEEPROM]: %u\n", rgblight_config.speed);
}
}
void rgblight_set_speed(uint8_t speed) { rgblight_set_speed_eeprom_helper(speed, true); }
void rgblight_set_speed_noeeprom(uint8_t speed) { rgblight_set_speed_eeprom_helper(speed, false); }
uint8_t rgblight_get_hue(void) { return rgblight_config.hue; }
uint8_t rgblight_get_sat(void) { return rgblight_config.sat; }
uint8_t rgblight_get_val(void) { return rgblight_config.val; }
HSV rgblight_get_hsv(void) { return (HSV){rgblight_config.hue, rgblight_config.sat, rgblight_config.val}; }
void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b) {
if (!rgblight_config.enable) {
return;
}
for (uint8_t i = rgblight_ranges.effect_start_pos; i < rgblight_ranges.effect_end_pos; i++) {
led[i].r = r;
led[i].g = g;
led[i].b = b;
#ifdef RGBW
led[i].w = 0;
#endif
}
rgblight_set();
}
void rgblight_setrgb_at(uint8_t r, uint8_t g, uint8_t b, uint8_t index) {
if (!rgblight_config.enable || index >= RGBLED_NUM) {
return;
}
led[index].r = r;
led[index].g = g;
led[index].b = b;
#ifdef RGBW
led[index].w = 0;
#endif
rgblight_set();
}
void rgblight_sethsv_at(uint8_t hue, uint8_t sat, uint8_t val, uint8_t index) {
if (!rgblight_config.enable) {
return;
}
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
rgblight_setrgb_at(tmp_led.r, tmp_led.g, tmp_led.b, index);
}
#if defined(RGBLIGHT_EFFECT_BREATHING) || defined(RGBLIGHT_EFFECT_RAINBOW_MOOD) || defined(RGBLIGHT_EFFECT_RAINBOW_SWIRL) || defined(RGBLIGHT_EFFECT_SNAKE) || defined(RGBLIGHT_EFFECT_KNIGHT) || defined(RGBLIGHT_EFFECT_TWINKLE)
static uint8_t get_interval_time(const uint8_t *default_interval_address, uint8_t velocikey_min, uint8_t velocikey_max) {
return
# ifdef VELOCIKEY_ENABLE
velocikey_enabled() ? velocikey_match_speed(velocikey_min, velocikey_max) :
# endif
pgm_read_byte(default_interval_address);
}
#endif
void rgblight_setrgb_range(uint8_t r, uint8_t g, uint8_t b, uint8_t start, uint8_t end) {
if (!rgblight_config.enable || start < 0 || start >= end || end > RGBLED_NUM) {
return;
}
for (uint8_t i = start; i < end; i++) {
led[i].r = r;
led[i].g = g;
led[i].b = b;
#ifdef RGBW
led[i].w = 0;
#endif
}
rgblight_set();
wait_ms(1);
}
void rgblight_sethsv_range(uint8_t hue, uint8_t sat, uint8_t val, uint8_t start, uint8_t end) {
if (!rgblight_config.enable) {
return;
}
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
rgblight_setrgb_range(tmp_led.r, tmp_led.g, tmp_led.b, start, end);
}
#ifndef RGBLIGHT_SPLIT
void rgblight_setrgb_master(uint8_t r, uint8_t g, uint8_t b) { rgblight_setrgb_range(r, g, b, 0, (uint8_t)RGBLED_NUM / 2); }
void rgblight_setrgb_slave(uint8_t r, uint8_t g, uint8_t b) { rgblight_setrgb_range(r, g, b, (uint8_t)RGBLED_NUM / 2, (uint8_t)RGBLED_NUM); }
void rgblight_sethsv_master(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_range(hue, sat, val, 0, (uint8_t)RGBLED_NUM / 2); }
void rgblight_sethsv_slave(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_range(hue, sat, val, (uint8_t)RGBLED_NUM / 2, (uint8_t)RGBLED_NUM); }
#endif // ifndef RGBLIGHT_SPLIT
#ifdef RGBLIGHT_LAYERS
void rgblight_set_layer_state(uint8_t layer, bool enabled) {
rgblight_layer_mask_t mask = 1 << layer;
if (enabled) {
rgblight_status.enabled_layer_mask |= mask;
} else {
rgblight_status.enabled_layer_mask &= ~mask;
}
RGBLIGHT_SPLIT_SET_CHANGE_LAYERS;
// Static modes don't have a ticker running to update the LEDs
if (rgblight_status.timer_enabled == false) {
rgblight_mode_noeeprom(rgblight_config.mode);
}
# ifdef RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF
// If not enabled, then nothing else will actually set the LEDs...
if (!rgblight_config.enable) {
rgblight_set();
}
# endif
}
bool rgblight_get_layer_state(uint8_t layer) {
rgblight_layer_mask_t mask = 1 << layer;
return (rgblight_status.enabled_layer_mask & mask) != 0;
}
// Write any enabled LED layers into the buffer
static void rgblight_layers_write(void) {
uint8_t i = 0;
// For each layer
for (const rgblight_segment_t *const *layer_ptr = rgblight_layers; i < RGBLIGHT_MAX_LAYERS; layer_ptr++, i++) {
if (!rgblight_get_layer_state(i)) {
continue; // Layer is disabled
}
const rgblight_segment_t *segment_ptr = pgm_read_ptr(layer_ptr);
if (segment_ptr == NULL) {
break; // No more layers
}
// For each segment
while (1) {
rgblight_segment_t segment;
memcpy_P(&segment, segment_ptr, sizeof(rgblight_segment_t));
if (segment.index == RGBLIGHT_END_SEGMENT_INDEX) {
break; // No more segments
}
// Write segment.count LEDs
LED_TYPE *const limit = &led[MIN(segment.index + segment.count, RGBLED_NUM)];
for (LED_TYPE *led_ptr = &led[segment.index]; led_ptr < limit; led_ptr++) {
sethsv(segment.hue, segment.sat, segment.val, led_ptr);
}
segment_ptr++;
}
}
}
# ifdef RGBLIGHT_LAYER_BLINK
rgblight_layer_mask_t _blinked_layer_mask = 0;
uint16_t _blink_duration = 0;
static uint16_t _blink_timer;
void rgblight_blink_layer(uint8_t layer, uint16_t duration_ms) {
rgblight_set_layer_state(layer, true);
_blinked_layer_mask |= 1 << layer;
_blink_timer = timer_read();
_blink_duration = duration_ms;
}
void rgblight_unblink_layers(void) {
if (_blinked_layer_mask != 0 && timer_elapsed(_blink_timer) > _blink_duration) {
for (uint8_t layer = 0; layer < RGBLIGHT_MAX_LAYERS; layer++) {
if ((_blinked_layer_mask & 1 << layer) != 0) {
rgblight_set_layer_state(layer, false);
}
}
_blinked_layer_mask = 0;
}
}
# endif
#endif
__attribute__((weak)) void rgblight_call_driver(LED_TYPE *start_led, uint8_t num_leds) { ws2812_setleds(start_led, num_leds); }
#ifndef RGBLIGHT_CUSTOM_DRIVER
void rgblight_set(void) {
LED_TYPE *start_led;
uint8_t num_leds = rgblight_ranges.clipping_num_leds;
if (!rgblight_config.enable) {
for (uint8_t i = rgblight_ranges.effect_start_pos; i < rgblight_ranges.effect_end_pos; i++) {
if (i == RGBLIGHT_FLED1 && i == RGBLIGHT_FLED2)
continue;
led[i].r = 0;
led[i].g = 0;
led[i].b = 0;
# ifdef RGBW
led[i].w = 0;
# endif
}
}
# ifdef RGBLIGHT_LAYERS
if (rgblight_layers != NULL
# ifndef RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF
&& rgblight_config.enable
# endif
) {
rgblight_layers_write();
}
# endif
# ifdef RGBLIGHT_LED_MAP
LED_TYPE led0[RGBLED_NUM];
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
led0[i] = led[pgm_read_byte(&led_map[i])];
}
start_led = led0 + rgblight_ranges.clipping_start_pos;
# else
start_led = led + rgblight_ranges.clipping_start_pos;
# endif
# ifdef RGBW
for (uint8_t i = 0; i < num_leds; i++) {
convert_rgb_to_rgbw(&start_led[i]);
}
# endif
// MxSS custom
switch (fled_mode) {
case FLED_OFF:
setrgb(0, 0, 0, &led[RGBLIGHT_FLED1]);
setrgb(0, 0, 0, &led[RGBLIGHT_FLED2]);
break;
case FLED_INDI:
copyrgb(&fleds[0], &led[RGBLIGHT_FLED1]);
copyrgb(&fleds[1], &led[RGBLIGHT_FLED2]);
break;
case FLED_RGB:
if (fled_hs[0].hue == 0 && fled_hs[0].hue == 0 &&
(rgblight_status.base_mode == RGBLIGHT_MODE_SNAKE ||
rgblight_status.base_mode == RGBLIGHT_MODE_KNIGHT))
setrgb(0, 0, 0, &led[RGBLIGHT_FLED1]);
else
sethsv(fled_hs[0].hue, fled_hs[0].sat, fled_val, &led[RGBLIGHT_FLED1]);
if (fled_hs[1].hue == 0 && fled_hs[1].hue == 0 &&
(rgblight_status.base_mode == RGBLIGHT_MODE_SNAKE ||
rgblight_status.base_mode == RGBLIGHT_MODE_KNIGHT))
setrgb(0, 0, 0, &led[RGBLIGHT_FLED2]);
else
sethsv(fled_hs[1].hue, fled_hs[1].sat, fled_val, &led[RGBLIGHT_FLED2]);
break;
default:
break;
}
rgblight_call_driver(start_led, num_leds);
}
#endif
#ifdef RGBLIGHT_SPLIT
/* for split keyboard master side */
uint8_t rgblight_get_change_flags(void) { return rgblight_status.change_flags; }
void rgblight_clear_change_flags(void) { rgblight_status.change_flags = 0; }
void rgblight_get_syncinfo(rgblight_syncinfo_t *syncinfo) {
syncinfo->config = rgblight_config;
syncinfo->status = rgblight_status;
}
/* for split keyboard slave side */
void rgblight_update_sync(rgblight_syncinfo_t *syncinfo, bool write_to_eeprom) {
# ifdef RGBLIGHT_LAYERS
if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_LAYERS) {
rgblight_status.enabled_layer_mask = syncinfo->status.enabled_layer_mask;
}
# endif
if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_MODE) {
if (syncinfo->config.enable) {
rgblight_config.enable = 1; // == rgblight_enable_noeeprom();
rgblight_mode_eeprom_helper(syncinfo->config.mode, write_to_eeprom);
} else {
rgblight_disable_noeeprom();
}
}
if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_HSVS) {
rgblight_sethsv_eeprom_helper(syncinfo->config.hue, syncinfo->config.sat, syncinfo->config.val, write_to_eeprom);
// rgblight_config.speed = config->speed; // NEED???
}
# ifdef RGBLIGHT_USE_TIMER
if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_TIMER) {
if (syncinfo->status.timer_enabled) {
rgblight_timer_enable();
} else {
rgblight_timer_disable();
}
}
# ifndef RGBLIGHT_SPLIT_NO_ANIMATION_SYNC
if (syncinfo->status.change_flags & RGBLIGHT_STATUS_ANIMATION_TICK) {
animation_status.restart = true;
}
# endif /* RGBLIGHT_SPLIT_NO_ANIMATION_SYNC */
# endif /* RGBLIGHT_USE_TIMER */
}
#endif /* RGBLIGHT_SPLIT */
#ifdef RGBLIGHT_USE_TIMER
typedef void (*effect_func_t)(animation_status_t *anim);
// Animation timer -- use system timer (AVR Timer0)
void rgblight_timer_init(void) {
// OLD!!!! Animation timer -- AVR Timer3
// static uint8_t rgblight_timer_is_init = 0;
// if (rgblight_timer_is_init) {
// return;
// }
// rgblight_timer_is_init = 1;
// /* Timer 3 setup */
// TCCR3B = _BV(WGM32) // CTC mode OCR3A as TOP
// | _BV(CS30); // Clock selelct: clk/1
// /* Set TOP value */
// uint8_t sreg = SREG;
// cli();
// OCR3AH = (RGBLED_TIMER_TOP >> 8) & 0xff;
// OCR3AL = RGBLED_TIMER_TOP & 0xff;
// SREG = sreg;
rgblight_status.timer_enabled = false;
RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE;
}
void rgblight_timer_enable(void) {
if (!is_static_effect(rgblight_config.mode)) {
rgblight_status.timer_enabled = true;
}
animation_status.last_timer = timer_read();
RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE;
dprintf("rgblight timer enabled.\n");
}
void rgblight_timer_disable(void) {
// MxSS custom code
if (fled_mode != FLED_RGB) {
rgblight_status.timer_enabled = false;
RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE;
dprintf("rgblight timer disable.\n");
}
}
void rgblight_timer_toggle(void) {
dprintf("rgblight timer toggle.\n");
if (rgblight_status.timer_enabled) {
rgblight_timer_disable();
} else {
rgblight_timer_enable();
}
}
void rgblight_show_solid_color(uint8_t r, uint8_t g, uint8_t b) {
rgblight_enable();
rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
rgblight_setrgb(r, g, b);
}
static void rgblight_effect_dummy(animation_status_t *anim) {
// do nothing
/********
dprintf("rgblight_task() what happened?\n");
dprintf("is_static_effect %d\n", is_static_effect(rgblight_config.mode));
dprintf("mode = %d, base_mode = %d, timer_enabled %d, ",
rgblight_config.mode, rgblight_status.base_mode,
rgblight_status.timer_enabled);
dprintf("last_timer = %d\n",anim->last_timer);
**/
}
void rgblight_task(void) {
if (rgblight_status.timer_enabled) {
effect_func_t effect_func = rgblight_effect_dummy;
uint16_t interval_time = 2000; // dummy interval
uint8_t delta = rgblight_config.mode - rgblight_status.base_mode;
animation_status.delta = delta;
// static light mode, do nothing here
if (1 == 0) { // dummy
}
# ifdef RGBLIGHT_EFFECT_BREATHING
else if (rgblight_status.base_mode == RGBLIGHT_MODE_BREATHING) {
// breathing mode
interval_time = get_interval_time(&RGBLED_BREATHING_INTERVALS[delta], 1, 100);
effect_func = rgblight_effect_breathing;
}
# endif
# ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_MOOD) {
// rainbow mood mode
interval_time = get_interval_time(&RGBLED_RAINBOW_MOOD_INTERVALS[delta], 5, 100);
effect_func = rgblight_effect_rainbow_mood;
}
# endif
# ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_SWIRL) {
// rainbow swirl mode
interval_time = get_interval_time(&RGBLED_RAINBOW_SWIRL_INTERVALS[delta / 2], 1, 100);
effect_func = rgblight_effect_rainbow_swirl;
}
# endif
# ifdef RGBLIGHT_EFFECT_SNAKE
else if (rgblight_status.base_mode == RGBLIGHT_MODE_SNAKE) {
// snake mode
interval_time = get_interval_time(&RGBLED_SNAKE_INTERVALS[delta / 2], 1, 200);
effect_func = rgblight_effect_snake;
}
# endif
# ifdef RGBLIGHT_EFFECT_KNIGHT
else if (rgblight_status.base_mode == RGBLIGHT_MODE_KNIGHT) {
// knight mode
interval_time = get_interval_time(&RGBLED_KNIGHT_INTERVALS[delta], 5, 100);
effect_func = rgblight_effect_knight;
}
# endif
# ifdef RGBLIGHT_EFFECT_CHRISTMAS
else if (rgblight_status.base_mode == RGBLIGHT_MODE_CHRISTMAS) {
// christmas mode
interval_time = RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL;
effect_func = (effect_func_t)rgblight_effect_christmas;
}
# endif
# ifdef RGBLIGHT_EFFECT_RGB_TEST
else if (rgblight_status.base_mode == RGBLIGHT_MODE_RGB_TEST) {
// RGB test mode
interval_time = pgm_read_word(&RGBLED_RGBTEST_INTERVALS[0]);
effect_func = (effect_func_t)rgblight_effect_rgbtest;
}
# endif
# ifdef RGBLIGHT_EFFECT_ALTERNATING
else if (rgblight_status.base_mode == RGBLIGHT_MODE_ALTERNATING) {
interval_time = 500;
effect_func = (effect_func_t)rgblight_effect_alternating;
}
# endif
# ifdef RGBLIGHT_EFFECT_TWINKLE
else if (rgblight_status.base_mode == RGBLIGHT_MODE_TWINKLE) {
interval_time = get_interval_time(&RGBLED_TWINKLE_INTERVALS[delta % 3], 5, 50);
effect_func = (effect_func_t)rgblight_effect_twinkle;
}
# endif
if (animation_status.restart) {
animation_status.restart = false;
animation_status.last_timer = timer_read() - interval_time - 1;
animation_status.pos16 = 0; // restart signal to local each effect
}
if (timer_elapsed(animation_status.last_timer) >= interval_time) {
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
static uint16_t report_last_timer = 0;
static bool tick_flag = false;
uint16_t oldpos16;
if (tick_flag) {
tick_flag = false;
if (timer_elapsed(report_last_timer) >= 30000) {
report_last_timer = timer_read();
dprintf("rgblight animation tick report to slave\n");
RGBLIGHT_SPLIT_ANIMATION_TICK;
}
}
oldpos16 = animation_status.pos16;
# endif
animation_status.last_timer += interval_time;
effect_func(&animation_status);
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
if (animation_status.pos16 == 0 && oldpos16 != 0) {
tick_flag = true;
}
# endif
}
}
# ifdef RGBLIGHT_LAYER_BLINK
rgblight_unblink_layers();
# endif
}
#endif /* RGBLIGHT_USE_TIMER */
// Effects
#ifdef RGBLIGHT_EFFECT_BREATHING
# ifndef RGBLIGHT_EFFECT_BREATHE_CENTER
# ifndef RGBLIGHT_BREATHE_TABLE_SIZE
# define RGBLIGHT_BREATHE_TABLE_SIZE 256 // 256 or 128 or 64
# endif
# include <rgblight_breathe_table.h>
# endif
__attribute__((weak)) const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5};
void rgblight_effect_breathing(animation_status_t *anim) {
float val;
// http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
# ifdef RGBLIGHT_EFFECT_BREATHE_TABLE
val = pgm_read_byte(&rgblight_effect_breathe_table[anim->pos / table_scale]);
# else
val = (exp(sin((anim->pos / 255.0) * M_PI)) - RGBLIGHT_EFFECT_BREATHE_CENTER / M_E) * (RGBLIGHT_EFFECT_BREATHE_MAX / (M_E - 1 / M_E));
# endif
rgblight_sethsv_noeeprom_old(rgblight_config.hue, rgblight_config.sat, val);
anim->pos = (anim->pos + 1);
}
#endif
#ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
__attribute__((weak)) const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30};
void rgblight_effect_rainbow_mood(animation_status_t *anim) {
rgblight_sethsv_noeeprom_old(anim->current_hue, rgblight_config.sat, rgblight_config.val);
anim->current_hue++;
}
#endif
#ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
# ifndef RGBLIGHT_RAINBOW_SWIRL_RANGE
# define RGBLIGHT_RAINBOW_SWIRL_RANGE 255
# endif
__attribute__((weak)) const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20};
void rgblight_effect_rainbow_swirl(animation_status_t *anim) {
uint8_t hue;
uint8_t i;
for (i = 0; i < rgblight_ranges.effect_num_leds; i++) {
hue = (RGBLIGHT_RAINBOW_SWIRL_RANGE / rgblight_ranges.effect_num_leds * i + anim->current_hue);
sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i + rgblight_ranges.effect_start_pos]);
}
rgblight_set();
if (anim->delta % 2) {
anim->current_hue++;
} else {
anim->current_hue--;
}
}
#endif
#ifdef RGBLIGHT_EFFECT_SNAKE
__attribute__((weak)) const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20};
void rgblight_effect_snake(animation_status_t *anim) {
static uint8_t pos = 0;
uint8_t i, j;
int8_t k;
int8_t increment = 1;
if (anim->delta % 2) {
increment = -1;
}
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
if (anim->pos == 0) { // restart signal
if (increment == 1) {
pos = rgblight_ranges.effect_num_leds - 1;
} else {
pos = 0;
}
anim->pos = 1;
}
# endif
// MxSS custom
fled_hs[0].hue = fled_hs[1].hue = 0;
fled_hs[0].sat = fled_hs[1].sat = 0;
for (i = 0; i < rgblight_ranges.effect_num_leds; i++) {
LED_TYPE *ledp = led + i + rgblight_ranges.effect_start_pos;
ledp->r = 0;
ledp->g = 0;
ledp->b = 0;
# ifdef RGBW
ledp->w = 0;
# endif
for (j = 0; j < RGBLIGHT_EFFECT_SNAKE_LENGTH; j++) {
k = pos + j * increment;
if (k > RGBLED_NUM) {
k = k % RGBLED_NUM;
}
if (k < 0) {
k = k + rgblight_ranges.effect_num_leds;
}
if (i == k) {
sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val * (RGBLIGHT_EFFECT_SNAKE_LENGTH - j) / RGBLIGHT_EFFECT_SNAKE_LENGTH), ledp);
}
}
}
rgblight_set();
if (increment == 1) {
if (pos - 1 < 0) {
pos = rgblight_ranges.effect_num_leds - 1;
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
anim->pos = 0;
# endif
} else {
pos -= 1;
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
anim->pos = 1;
# endif
}
} else {
pos = (pos + 1) % rgblight_ranges.effect_num_leds;
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
anim->pos = pos;
# endif
}
}
#endif
#ifdef RGBLIGHT_EFFECT_KNIGHT
__attribute__((weak)) const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31};
void rgblight_effect_knight(animation_status_t *anim) {
static int8_t low_bound = 0;
static int8_t high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1;
static int8_t increment = 1;
uint8_t i, cur;
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
if (anim->pos == 0) { // restart signal
anim->pos = 1;
low_bound = 0;
high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1;
increment = 1;
}
# endif
// Set all the LEDs to 0
for (i = rgblight_ranges.effect_start_pos; i < rgblight_ranges.effect_end_pos; i++) {
led[i].r = 0;
led[i].g = 0;
led[i].b = 0;
# ifdef RGBW
led[i].w = 0;
# endif
}
// Determine which LEDs should be lit up
for (i = 0; i < RGBLIGHT_EFFECT_KNIGHT_LED_NUM; i++) {
cur = (i + RGBLIGHT_EFFECT_KNIGHT_OFFSET) % rgblight_ranges.effect_num_leds + rgblight_ranges.effect_start_pos;
if (i >= low_bound && i <= high_bound) {
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[cur]);
} else {
// MxSS custom code
if (cur == RGBLIGHT_FLED1) {
fled_hs[0].hue = fled_hs[0].sat = 0;
} else if (cur == RGBLIGHT_FLED2) {
fled_hs[1].hue = fled_hs[1].sat = 0;
}
led[cur].r = 0;
led[cur].g = 0;
led[cur].b = 0;
# ifdef RGBW
led[cur].w = 0;
# endif
}
}
rgblight_set();
// Move from low_bound to high_bound changing the direction we increment each
// time a boundary is hit.
low_bound += increment;
high_bound += increment;
if (high_bound <= 0 || low_bound >= RGBLIGHT_EFFECT_KNIGHT_LED_NUM - 1) {
increment = -increment;
# if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC)
if (increment == 1) {
anim->pos = 0;
}
# endif
}
}
#endif
#ifdef RGBLIGHT_EFFECT_CHRISTMAS
# define CUBED(x) ((x) * (x) * (x))
/**
* Christmas lights effect, with a smooth animation between red & green.
*/
void rgblight_effect_christmas(animation_status_t *anim) {
static int8_t increment = 1;
const uint8_t max_pos = 32;
const uint8_t hue_green = 85;
uint32_t xa;
uint8_t hue, val;
uint8_t i;
// The effect works by animating anim->pos from 0 to 32 and back to 0.
// The pos is used in a cubic bezier formula to ease-in-out between red and green, leaving the interpolated colors visible as short as possible.
xa = CUBED((uint32_t)anim->pos);
hue = ((uint32_t)hue_green) * xa / (xa + CUBED((uint32_t)(max_pos - anim->pos)));
// Additionally, these interpolated colors get shown with a slightly darker value, to make them less prominent than the main colors.
val = 255 - (3 * (hue < hue_green / 2 ? hue : hue_green - hue) / 2);
for (i = 0; i < rgblight_ranges.effect_num_leds; i++) {
uint8_t local_hue = (i / RGBLIGHT_EFFECT_CHRISTMAS_STEP) % 2 ? hue : hue_green - hue;
sethsv(local_hue, rgblight_config.sat, val, (LED_TYPE *)&led[i + rgblight_ranges.effect_start_pos]);
}
rgblight_set();
if (anim->pos == 0) {
increment = 1;
} else if (anim->pos == max_pos) {
increment = -1;
}
anim->pos += increment;
}
#endif
#ifdef RGBLIGHT_EFFECT_RGB_TEST
__attribute__((weak)) const uint16_t RGBLED_RGBTEST_INTERVALS[] PROGMEM = {1024};
void rgblight_effect_rgbtest(animation_status_t *anim) {
static uint8_t maxval = 0;
uint8_t g;
uint8_t r;
uint8_t b;
if (maxval == 0) {
LED_TYPE tmp_led;
sethsv(0, 255, RGBLIGHT_LIMIT_VAL, &tmp_led);
maxval = tmp_led.r;
}
g = r = b = 0;
switch (anim->pos) {
// MxSS custom code
case 0:
r = maxval;
fled_hs[0].hue = 0;
fled_hs[0].sat = 255;
fled_hs[1].hue = 0;
fled_hs[1].sat = 255;
break;
case 1:
g = maxval;
fled_hs[0].hue = 85;
fled_hs[0].sat = 255;
fled_hs[1].hue = 85;
fled_hs[1].sat = 255;
break;
case 2:
b = maxval;
fled_hs[0].hue = 170;
fled_hs[0].sat = 255;
fled_hs[1].hue = 170;
fled_hs[1].sat = 255;
break;
}
rgblight_setrgb(r, g, b);
anim->pos = (anim->pos + 1) % 3;
}
#endif
#ifdef RGBLIGHT_EFFECT_ALTERNATING
void rgblight_effect_alternating(animation_status_t *anim) {
for (int i = 0; i < rgblight_ranges.effect_num_leds; i++) {
LED_TYPE *ledp = led + i + rgblight_ranges.effect_start_pos;
if (i < rgblight_ranges.effect_num_leds / 2 && anim->pos) {
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, ledp);
} else if (i >= rgblight_ranges.effect_num_leds / 2 && !anim->pos) {
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, ledp);
} else {
sethsv(rgblight_config.hue, rgblight_config.sat, 0, ledp);
}
}
rgblight_set();
anim->pos = (anim->pos + 1) % 2;
}
#endif
#ifdef RGBLIGHT_EFFECT_TWINKLE
__attribute__((weak)) const uint8_t RGBLED_TWINKLE_INTERVALS[] PROGMEM = {50, 25, 10};
typedef struct PACKED {
HSV hsv;
uint8_t life;
bool up;
} TwinkleState;
static TwinkleState led_twinkle_state[RGBLED_NUM];
void rgblight_effect_twinkle(animation_status_t *anim) {
bool random_color = anim->delta / 3;
bool restart = anim->pos == 0;
anim->pos = 1;
for (uint8_t i = 0; i < rgblight_ranges.effect_num_leds; i++) {
TwinkleState *t = &(led_twinkle_state[i]);
HSV * c = &(t->hsv);
if (restart) {
// Restart
t->life = 0;
t->hsv.v = 0;
} else if (t->life) {
// This LED is already on, either brightening or dimming
t->life--;
uint8_t on = t->up ? RGBLIGHT_EFFECT_TWINKLE_LIFE - t->life : t->life;
c->v = (uint16_t)rgblight_config.val * on / RGBLIGHT_EFFECT_TWINKLE_LIFE;
if (t->life == 0 && t->up) {
t->up = false;
t->life = RGBLIGHT_EFFECT_TWINKLE_LIFE;
}
if (!random_color) {
c->h = rgblight_config.hue;
c->s = rgblight_config.sat;
}
} else if (rand() < RAND_MAX * RGBLIGHT_EFFECT_TWINKLE_PROBABILITY) {
// This LED is off, but was randomly selected to start brightening
c->h = random_color ? rand() % 0xFF : rgblight_config.hue;
c->s = random_color ? (rand() % (rgblight_config.sat / 2)) + (rgblight_config.sat / 2) : rgblight_config.sat;
c->v = 0;
t->life = RGBLIGHT_EFFECT_TWINKLE_LIFE;
t->up = true;
} else {
// This LED is off, and was NOT selected to start brightening
}
LED_TYPE *ledp = led + i + rgblight_ranges.effect_start_pos;
sethsv(c->h, c->s, c->v, ledp);
}
rgblight_set();
}
#endif