qmk_firmware/docs/feature_rgb_matrix.md

59 KiB

RGB Matrix Lighting :id=rgb-matrix-lighting

This feature allows you to use RGB LED matrices driven by external drivers. It hooks into the RGBLIGHT system so you can use the same keycodes as RGBLIGHT to control it.

If you want to use single color LED's you should use the LED Matrix Subsystem instead.

Driver configuration :id=driver-configuration


IS31FL3731 :id=is31fl3731

There is basic support for addressable RGB matrix lighting with the I2C IS31FL3731 RGB controller. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3731

You can use between 1 and 4 IS31FL3731 IC's. Do not specify DRIVER_ADDR_<N> defines for IC's that are not present on your keyboard. You can define the following items in config.h:

Variable Description Default
ISSI_TIMEOUT (Optional) How long to wait for i2c messages, in milliseconds 100
ISSI_PERSISTENCE (Optional) Retry failed messages this many times 0
ISSI_3731_DEGHOST (Optional) Set this define to enable de-ghosting by halving Vcc during blanking time
DRIVER_COUNT (Required) How many RGB driver IC's are present
RGB_MATRIX_LED_COUNT (Required) How many RGB lights are present across all drivers
DRIVER_ADDR_1 (Required) Address for the first RGB driver
DRIVER_ADDR_2 (Optional) Address for the second RGB driver
DRIVER_ADDR_3 (Optional) Address for the third RGB driver
DRIVER_ADDR_4 (Optional) Address for the fourth RGB driver

Here is an example using 2 drivers.

// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define RGB_MATRIX_LED_COUNT (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)

!> Note the parentheses, this is so when RGB_MATRIX_LED_COUNT is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL) will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL.

For split keyboards using RGB_MATRIX_SPLIT with an LED driver, you can either have the same driver address or different driver addresses. If using different addresses, use DRIVER_ADDR_1 for one and DRIVER_ADDR_2 for the other one. Then, in g_is31_leds, fill out the correct driver index (0 or 1). If using one address, use DRIVER_ADDR_1 for both, and use index 0 for g_is31_leds.

Define these arrays listing all the LEDs in your <keyboard>.c:

const is31_led PROGMEM g_is31_leds[RGB_MATRIX_LED_COUNT] = {
/* Refer to IS31 manual for these locations
 *   driver
 *   |  R location
 *   |  |      G location
 *   |  |      |      B location
 *   |  |      |      | */
    {0, C1_3,  C2_3,  C3_3},
    ....
}

Where Cx_y is the location of the LED in the matrix defined by the datasheet and the header file drivers/led/issi/is31fl3731.h. The driver is the index of the driver you defined in your config.h (0, 1, 2, or 3).


IS31FL3733 :id=is31fl3733

There is basic support for addressable RGB matrix lighting with the I2C IS31FL3733 RGB controller. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3733

You can use between 1 and 4 IS31FL3733 IC's. Do not specify DRIVER_ADDR_<N> defines for IC's that are not present on your keyboard. You can define the following items in config.h:

Variable Description Default
ISSI_TIMEOUT (Optional) How long to wait for i2c messages, in milliseconds 100
ISSI_PERSISTENCE (Optional) Retry failed messages this many times 0
ISSI_PWM_FREQUENCY (Optional) PWM Frequency Setting - IS31FL3733B only 0
ISSI_GLOBALCURRENT (Optional) Configuration for the Global Current Register 0xFF
ISSI_SWPULLUP (Optional) Set the value of the SWx lines on-chip de-ghosting resistors PUR_0R (Disabled)
ISSI_CSPULLUP (Optional) Set the value of the CSx lines on-chip de-ghosting resistors PUR_0R (Disabled)
DRIVER_COUNT (Required) How many RGB driver IC's are present
RGB_MATRIX_LED_COUNT (Required) How many RGB lights are present across all drivers
DRIVER_ADDR_1 (Required) Address for the first RGB driver
DRIVER_ADDR_2 (Optional) Address for the second RGB driver
DRIVER_ADDR_3 (Optional) Address for the third RGB driver
DRIVER_ADDR_4 (Optional) Address for the fourth RGB driver
DRIVER_SYNC_1 (Optional) Sync configuration for the first RGB driver 0
DRIVER_SYNC_2 (Optional) Sync configuration for the second RGB driver 0
DRIVER_SYNC_3 (Optional) Sync configuration for the third RGB driver 0
DRIVER_SYNC_4 (Optional) Sync configuration for the fourth RGB driver 0

The IS31FL3733 IC's have on-chip resistors that can be enabled to allow for de-ghosting of the RGB matrix. By default these resistors are not enabled (ISSI_SWPULLUP/ISSI_CSPULLUP are given the value ofPUR_0R), the values that can be set to enable de-ghosting are as follows:

ISSI_SWPULLUP/ISSI_CSPULLUP Description
PUR_0R (default) Do not use the on-chip resistors/enable de-ghosting
PUR_05KR The 0.5k Ohm resistor used during blanking period (t_NOL)
PUR_3KR The 3k Ohm resistor used at all times
PUR_4KR The 4k Ohm resistor used at all times
PUR_8KR The 8k Ohm resistor used at all times
PUR_16KR The 16k Ohm resistor used at all times
PUR_32KR The 32k Ohm resistor used during blanking period (t_NOL)

Here is an example using 2 drivers.

// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 00 <-> GND
// 01 <-> SCL
// 10 <-> SDA
// 11 <-> VCC
// ADDR1 represents A1:A0 of the 7-bit address.
// ADDR2 represents A3:A2 of the 7-bit address.
// The result is: 0b101(ADDR2)(ADDR1)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010011

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 58
#define DRIVER_2_LED_TOTAL 10
#define RGB_MATRIX_LED_COUNT (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)

!> Note the parentheses, this is so when RGB_MATRIX_LED_COUNT is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL) will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL.

Currently only 4 drivers are supported, but it would be trivial to support all 8 combinations.

Define these arrays listing all the LEDs in your <keyboard>.c:

const is31_led PROGMEM g_is31_leds[RGB_MATRIX_LED_COUNT] = {
/* Refer to IS31 manual for these locations
 *   driver
 *   |  R location
 *   |  |       G location
 *   |  |       |       B location
 *   |  |       |       | */
    {0, B_1,    A_1,    C_1},
    ....
}

Where X_Y is the location of the LED in the matrix defined by the datasheet and the header file drivers/led/issi/is31fl3733.h. The driver is the index of the driver you defined in your config.h (0, 1, 2, or 3 for now).


IS31FL3736 :id=is31fl3736

There is basic support for addressable RGB matrix lighting with the I2C IS31FL3737 RGB controller. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3736

You can use between 1 and 4 IS31FL3736 IC's. Do not specify DRIVER_ADDR_<N> defines for IC's that are not present on your keyboard.

Configure the hardware via your config.h:

Variable Description Default
ISSI_TIMEOUT (Optional) How long to wait for i2c messages, in milliseconds 100
ISSI_PERSISTENCE (Optional) Retry failed messages this many times 0
ISSI_PWM_FREQUENCY (Optional) PWM Frequency Setting - IS31FL3736B only 0
ISSI_GLOBALCURRENT (Optional) Configuration for the Global Current Register 0xFF
ISSI_SWPULLUP (Optional) Set the value of the SWx lines on-chip de-ghosting resistors PUR_0R (Disabled)
ISSI_CSPULLUP (Optional) Set the value of the CSx lines on-chip de-ghosting resistors PUR_0R (Disabled)
DRIVER_COUNT (Required) How many RGB driver IC's are present
RGB_MATRIX_LED_COUNT (Required) How many RGB lights are present across all drivers
DRIVER_ADDR_1 (Required) Address for the first RGB driver
DRIVER_ADDR_2 (Optional) Address for the second RGB driver
DRIVER_ADDR_3 (Optional) Address for the third RGB driver
DRIVER_ADDR_4 (Optional) Address for the fourth RGB driver

The IS31FL3736 IC's have on-chip resistors that can be enabled to allow for de-ghosting of the RGB matrix. By default these resistors are not enabled (ISSI_SWPULLUP/ISSI_CSPULLUP are given the value ofPUR_0R), the values that can be set to enable de-ghosting are as follows:

ISSI_SWPULLUP/ISSI_CSPULLUP Description
PUR_0R (default) Do not use the on-chip resistors/enable de-ghosting
PUR_05KR The 0.5k Ohm resistor used during blanking period (t_NOL)
PUR_1KR The 1k Ohm resistor used during blanking period (t_NOL)
PUR_2KR The 2k Ohm resistor used during blanking period (t_NOL)
PUR_4KR The 4k Ohm resistor used during blanking period (t_NOL)
PUR_8KR The 8k Ohm resistor during blanking period (t_NOL)
PUR_16KR The 16k Ohm resistor during blanking period (t_NOL)
PUR_32KR The 32k Ohm resistor used during blanking period (t_NOL)

Here is an example using 2 drivers.

// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0000 <-> GND
// 0101 <-> SCL
// 1010 <-> SDA
// 1111 <-> VCC
// ADDR represents A3:A0 of the 7-bit address.
// The result is: 0b101(ADDR)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010001

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 30
#define DRIVER_2_LED_TOTAL 36
#define RGB_MATRIX_LED_COUNT (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)

!> Note the parentheses, this is so when RGB_MATRIX_LED_COUNT is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL) will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL.

Define these arrays listing all the LEDs in your <keyboard>.c:

const is31_led PROGMEM g_is31_leds[RGB_MATRIX_LED_COUNT] = {
/* Refer to IS31 manual for these locations
 *   driver
 *   |  R location
 *   |  |       G location
 *   |  |       |       B location
 *   |  |       |       | */
    {0, B_1,    A_1,    C_1},
    ....
}

IS31FL3737 :id=is31fl3737

There is basic support for addressable RGB matrix lighting with the I2C IS31FL3737 RGB controller. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3737

You can use between 1 and 4 IS31FL3737 IC's. Do not specify DRIVER_ADDR_<N> defines for IC's that are not present on your keyboard.

Configure the hardware via your config.h:

Variable Description Default
ISSI_TIMEOUT (Optional) How long to wait for i2c messages, in milliseconds 100
ISSI_PERSISTENCE (Optional) Retry failed messages this many times 0
ISSI_PWM_FREQUENCY (Optional) PWM Frequency Setting - IS31FL3737B only 0
ISSI_GLOBALCURRENT (Optional) Configuration for the Global Current Register 0xFF
ISSI_SWPULLUP (Optional) Set the value of the SWx lines on-chip de-ghosting resistors PUR_0R (Disabled)
ISSI_CSPULLUP (Optional) Set the value of the CSx lines on-chip de-ghosting resistors PUR_0R (Disabled)
DRIVER_COUNT (Required) How many RGB driver IC's are present
RGB_MATRIX_LED_COUNT (Required) How many RGB lights are present across all drivers
DRIVER_ADDR_1 (Required) Address for the first RGB driver
DRIVER_ADDR_2 (Optional) Address for the second RGB driver
DRIVER_ADDR_3 (Optional) Address for the third RGB driver
DRIVER_ADDR_4 (Optional) Address for the fourth RGB driver

The IS31FL3737 IC's have on-chip resistors that can be enabled to allow for de-ghosting of the RGB matrix. By default these resistors are not enabled (ISSI_SWPULLUP/ISSI_CSPULLUP are given the value ofPUR_0R), the values that can be set to enable de-ghosting are as follows:

ISSI_SWPULLUP/ISSI_CSPULLUP Description
PUR_0R (default) Do not use the on-chip resistors/enable de-ghosting
PUR_05KR The 0.5k Ohm resistor used during blanking period (t_NOL)
PUR_1KR The 1k Ohm resistor used during blanking period (t_NOL)
PUR_2KR The 2k Ohm resistor used during blanking period (t_NOL)
PUR_4KR The 4k Ohm resistor used during blanking period (t_NOL)
PUR_8KR The 8k Ohm resistor during blanking period (t_NOL)
PUR_16KR The 16k Ohm resistor during blanking period (t_NOL)
PUR_32KR The 32k Ohm resistor used during blanking period (t_NOL)

Here is an example using 2 drivers.

// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0000 <-> GND
// 0101 <-> SCL
// 1010 <-> SDA
// 1111 <-> VCC
// ADDR represents A3:A0 of the 7-bit address.
// The result is: 0b101(ADDR)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010001

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 30
#define DRIVER_2_LED_TOTAL 36
#define RGB_MATRIX_LED_COUNT (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)

!> Note the parentheses, this is so when RGB_MATRIX_LED_COUNT is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL) will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL.

Define these arrays listing all the LEDs in your <keyboard>.c:

const is31_led PROGMEM g_is31_leds[RGB_MATRIX_LED_COUNT] = {
/* Refer to IS31 manual for these locations
 *   driver
 *   |  R location
 *   |  |       G location
 *   |  |       |       B location
 *   |  |       |       | */
    {0, B_1,    A_1,    C_1},
    ....
}

Where X_Y is the location of the LED in the matrix defined by the datasheet and the header file drivers/led/issi/is31fl3737.h. The driver is the index of the driver you defined in your config.h (Only 0, 1, 2, or 3 for now).


IS31FLCOMMON :id=is31flcommon

There is basic support for addressable RGB matrix lighting with a selection of I2C ISSI Lumissil RGB controllers through a shared common driver. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = <driver name>

Where <driver name> is the applicable LED driver chip as below

Driver Name Data Sheet Capability
IS31FL3742A datasheet 60 RGB, 30x6 Matrix
IS31FL3743A datasheet 66 RGB, 18x11 Matrix
IS31FL3745 datasheet 48 RGB, 18x8 Matrix
IS31FL3746A datasheet 24 RGB, 18x4 Matrix

You can use between 1 and 4 IC's. Do not specify DRIVER_ADDR_<N> define for IC's if not present on your keyboard. The DRIVER_ADDR_1 default assumes that all Address pins on the controller have been connected to GND. Drivers that have SYNC functionality have the default settings to disable if 1 driver. If more than 1 drivers then DRIVER_ADDR_1 will be set to Master and the remaining ones set to Slave.

Configure the hardware via your config.h:

Variable Description Default
ISSI_TIMEOUT (Optional) How long to wait for i2c messages, in milliseconds 100
ISSI_PERSISTENCE (Optional) Retry failed messages this many times 0
DRIVER_COUNT (Required) How many RGB driver IC's are present
RGB_MATRIX_LED_COUNT (Required) How many RGB lights are present across all drivers
DRIVER_ADDR_1 (Optional) Address for the first RGB driver
DRIVER_ADDR_<N> (Required) Address for the additional RGB drivers
ISSI_SSR_<N> (Optional) Configuration for the Spread Spectrum Register
ISSI_CONFIGURATION (Optional) Configuration for the Configuration Register
ISSI_GLOBALCURRENT (Optional) Configuration for the Global Current Register 0xFF
ISSI_PULLDOWNUP (Optional) Configuration for the Pull Up & Pull Down Register
ISSI_TEMP (Optional) Configuration for the Temperature Register
ISSI_PWM_ENABLE (Optional) Configuration for the PWM Enable Register
ISSI_PWM_SET (Optional) Configuration for the PWM Setting Register
ISSI_SCAL_RED (Optional) Configuration for the RED LEDs in Scaling Registers 0xFF
ISSI_SCAL_BLUE (Optional) Configuration for the BLUE LEDs in Scaling Registers 0xFF
ISSI_SCAL_GREEN (Optional) Configuration for the GREEN LEDs in Scaling Registers 0xFF
ISSI_MANUAL_SCALING (Optional) If you wish to configure the Scaling Registers manually

Defaults

Variable IS31FL3742A IS31FL3743A IS31FL3745 IS31FL3746
DRIVER_ADDR_1 0b0110000 0b0100000 0b0100000 0b1100000
ISSI_SSR_1 0x00 0x00 / 0x60 0x00 / 0xC0 0x00
ISSI_SSR_<2-4> 0x00 0x40 0x80 0x00
ISSI_CONFIGURATION 0x31 0x01 0x31 0x01
ISSI_PULLDOWNUP 0x55 0x33 0x33 0x33
ISSI_TEMP N/A 0x00 0x00 0x00
ISSI_PWM_ENABLE N/A N/A N/A 0x00
ISSI_PWM_SET 0x00 N/A N/A 0x00

Here is an example using 2 drivers.

#define DRIVER_ADDR_2 0b0100001

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 66
#define DRIVER_2_LED_TOTAL 42
#define RGB_MATRIX_LED_COUNT (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)

!> Note the parentheses, this is so when RGB_MATRIX_LED_COUNT is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL) will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL.

Currently only 4 drivers are supported, but it would be trivial to support for more. Note that using a combination of different drivers is not supported. All drivers must be of the same model.

Define these arrays listing all the LEDs in your <keyboard>.c:

const is31_led __flash g_is31_leds[RGB_MATRIX_LED_COUNT] = {
/* Refer to IS31 manual for these locations
 *   driver
 *   |  R location
 *   |  |        G location
 *   |  |        |        B location
 *   |  |        |        | */
    {0, CS1_SW1, CS2_SW1, CS3_SW1},
    ....
}

Where CSx_SWx is the location of the LED in the matrix defined by the datasheet. The driver is the index of the driver you defined in your config.h (0, 1, 2, or 3 for now).

ISSI_MANUAL_SCALING is used to override the Scaling for individual LED's. By default they will be set as per ISSI_SCAL_<colour>. In config.h set how many LED's you want to manually set scaling for. Eg #define ISSI_MANUAL_SCALING 3

Then Define the array listing all the LEDs you want to override in your <keyboard>.c:

const is31_led __flash g_is31_scaling[ISSI_MANUAL_SCALING] = {
 *   LED Index
 *   |  R scaling
 *   |  |    G scaling
 *   |  |    |    B scaling
 *   |  |    |    | */
    {5, 120, 155, 167},
    {9, 120, 155, 167},
    ....
}

Where LED Index is the position of the LED in the g_is31_leds array. The scaling value between 0 and 255 to be written to the Scaling Register.


WS2812 :id=ws2812

There is basic support for addressable RGB matrix lighting with a WS2811/WS2812{a,b,c} addressable LED strand. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = WS2812

Configure the hardware via your config.h:

// The pin connected to the data pin of the LEDs
#define WS2812_DI_PIN D7
// The number of LEDs connected
#define RGB_MATRIX_LED_COUNT 70

?> There are additional configuration options for ARM controllers that offer increased performance over the default bitbang driver. Please see WS2812 Driver for more information.


APA102 :id=apa102

There is basic support for APA102 based addressable LED strands. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = APA102

Configure the hardware via your config.h:

// The pin connected to the data pin of the LEDs
#define APA102_DI_PIN D7
// The pin connected to the clock pin of the LEDs
#define APA102_CI_PIN D6
// The number of LEDs connected
#define RGB_MATRIX_LED_COUNT 70

AW20216 :id=aw20216

There is basic support for addressable RGB matrix lighting with the SPI AW20216 RGB controller. To enable it, add this to your rules.mk:

RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = AW20216

You can use up to 2 AW20216 IC's. Do not specify DRIVER_<N>_xxx defines for IC's that are not present on your keyboard. You can define the following items in config.h:

Variable Description Default
DRIVER_1_CS (Required) MCU pin connected to first RGB driver chip select line B13
DRIVER_2_CS (Optional) MCU pin connected to second RGB driver chip select line
DRIVER_1_EN (Required) MCU pin connected to first RGB driver hardware enable line C13
DRIVER_2_EN (Optional) MCU pin connected to second RGB driver hardware enable line
DRIVER_1_LED_TOTAL (Required) How many RGB lights are connected to first RGB driver
DRIVER_2_LED_TOTAL (Optional) How many RGB lights are connected to second RGB driver
DRIVER_COUNT (Required) How many RGB driver IC's are present
RGB_MATRIX_LED_COUNT (Required) How many RGB lights are present across all drivers
AW_SCALING_MAX (Optional) LED current scaling value (0-255, higher values mean LED is brighter at full PWM) 150
AW_GLOBAL_CURRENT_MAX (Optional) Driver global current limit (0-255, higher values means the driver may consume more power) 150
AW_SPI_MODE (Optional) Mode for SPI communication (0-3, defines polarity and phase of the clock) 3
AW_SPI_DIVISOR (Optional) Clock divisor for SPI communication (powers of 2, smaller numbers means faster communication, should not be less than 4) 4

Here is an example using 2 drivers.

#define DRIVER_1_CS B13
#define DRIVER_2_CS B14
// Hardware enable lines may be connected to the same pin
#define DRIVER_1_EN C13
#define DRIVER_2_EN C13

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 66
#define DRIVER_2_LED_TOTAL 32
#define RGB_MATRIX_LED_COUNT (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)

!> Note the parentheses, this is so when RGB_MATRIX_LED_COUNT is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL) will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL.

Define these arrays listing all the LEDs in your <keyboard>.c:

const aw_led PROGMEM g_aw_leds[RGB_MATRIX_LED_COUNT] = {
/* Each AW20216 channel is controlled by a register at some offset between 0x00
 * and 0xD7 inclusive.
 * See drivers/awinic/aw20216.h for the mapping between register offsets and
 * driver pin locations.
 *    driver
 *    |  R location
 *    |  |        G location
 *    |  |        |        B location
 *    |  |        |        | */
    { 0, CS1_SW1, CS2_SW1, CS3_SW1 },
    { 0, CS4_SW1, CS5_SW1, CS6_SW1 },
    { 0, CS7_SW1, CS8_SW1, CS9_SW1 },
    { 0, CS10_SW1, CS11_SW1, CS12_SW1 },
    { 0, CS13_SW1, CS14_SW1, CS15_SW1 },
    ...
    { 1, CS1_SW1, CS2_SW1, CS3_SW1 },
    { 1, CS13_SW1, CS14_SW1, CS15_SW1 },
    { 1, CS16_SW1, CS17_SW1, CS18_SW1 },
    { 1, CS4_SW2, CS5_SW2, CS6_SW2 },
    ...
};

Common Configuration :id=common-configuration

From this point forward the configuration is the same for all the drivers. The led_config_t struct provides a key electrical matrix to led index lookup table, what the physical position of each LED is on the board, and what type of key or usage the LED if the LED represents. Here is a brief example:

led_config_t g_led_config = { {
  // Key Matrix to LED Index
  {   5, NO_LED, NO_LED,   0 },
  { NO_LED, NO_LED, NO_LED, NO_LED },
  {   4, NO_LED, NO_LED,   1 },
  {   3, NO_LED, NO_LED,   2 }
}, {
  // LED Index to Physical Position
  { 188,  16 }, { 187,  48 }, { 149,  64 }, { 112,  64 }, {  37,  48 }, {  38,  16 }
}, {
  // LED Index to Flag
  1, 4, 4, 4, 4, 1
} };

The first part, // Key Matrix to LED Index, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, // LED Index to Physical Position represents the LED's physical { x, y } position on the keyboard. The default expected range of values for { x, y } is the inclusive range { 0..224, 0..64 }. This default expected range is due to effects that calculate the center of the keyboard for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents { x, y } coordinate { 0, 0 } and the bottom right of your keyboard represents { 224, 64 }. Using this as a basis, you can use the following formula to calculate the physical position:

x = 224 / (NUMBER_OF_COLS - 1) * COL_POSITION
y =  64 / (NUMBER_OF_ROWS - 1) * ROW_POSITION

Where NUMBER_OF_COLS, NUMBER_OF_ROWS, COL_POSITION, & ROW_POSITION are all based on the physical layout of your keyboard, not the electrical layout.

As mentioned earlier, the center of the keyboard by default is expected to be { 112, 32 }, but this can be changed if you want to more accurately calculate the LED's physical { x, y } positions. Keyboard designers can implement #define RGB_MATRIX_CENTER { 112, 32 } in their config.h file with the new center point of the keyboard, or where they want it to be allowing more possibilities for the { x, y } values. Do note that the maximum value for x or y is 255, and the recommended maximum is 224 as this gives animations runoff room before they reset.

// LED Index to Flag is a bitmask, whether or not a certain LEDs is of a certain type. It is recommended that LEDs are set to only 1 type.

Flags :id=flags

Define Value Description
HAS_FLAGS(bits, flags) n/a Evaluates to true if bits has all flags set
HAS_ANY_FLAGS(bits, flags) n/a Evaluates to true if bits has any flags set
LED_FLAG_NONE 0x00 If this LED has no flags
LED_FLAG_ALL 0xFF If this LED has all flags
LED_FLAG_MODIFIER 0x01 If the LED is on a modifier key
LED_FLAG_UNDERGLOW 0x02 If the LED is for underglow
LED_FLAG_KEYLIGHT 0x04 If the LED is for key backlight
LED_FLAG_INDICATOR 0x08 If the LED is for keyboard state indication

Keycodes :id=keycodes

All RGB keycodes are currently shared with the RGBLIGHT system:

Key Aliases Description
RGB_TOG Toggle RGB lighting on or off
RGB_MODE_FORWARD RGB_MOD Cycle through modes, reverse direction when Shift is held
RGB_MODE_REVERSE RGB_RMOD Cycle through modes in reverse, forward direction when Shift is held
RGB_HUI Increase hue, decrease hue when Shift is held
RGB_HUD Decrease hue, increase hue when Shift is held
RGB_SAI Increase saturation, decrease saturation when Shift is held
RGB_SAD Decrease saturation, increase saturation when Shift is held
RGB_VAI Increase value (brightness), decrease value when Shift is held
RGB_VAD Decrease value (brightness), increase value when Shift is held
RGB_SPI Increase effect speed (does not support eeprom yet), decrease speed when Shift is held
RGB_SPD Decrease effect speed (does not support eeprom yet), increase speed when Shift is held
RGB_MODE_PLAIN RGB_M_P Static (no animation) mode
RGB_MODE_BREATHE RGB_M_B Breathing animation mode
RGB_MODE_RAINBOW RGB_M_R Full gradient scrolling left to right (uses the RGB_MATRIX_CYCLE_LEFT_RIGHT mode)
RGB_MODE_SWIRL RGB_M_SW Full gradient spinning pinwheel around center of keyboard (uses RGB_MATRIX_CYCLE_PINWHEEL mode)
  • RGB_MODE_* keycodes will generally work, but not all of the modes are currently mapped to the correct effects for the RGB Matrix system.

RGB_MODE_PLAIN, RGB_MODE_BREATHE, RGB_MODE_RAINBOW, and RGB_MODE_SWIRL are the only ones that are mapped properly. The rest don't have a direct equivalent, and are not mapped.

?> RGB_* keycodes cannot be used with functions like tap_code16(RGB_HUD) as they're not USB HID keycodes. If you wish to replicate similar behaviour in custom code within your firmware (e.g. inside encoder_update_user() or process_record_user()), the equivalent RGB functions should be used instead.

!> By default, if you have both the RGB Light and the RGB Matrix feature enabled, these keycodes will work for both features, at the same time. You can disable the keycode functionality by defining the *_DISABLE_KEYCODES option for the specific feature.

RGB Matrix Effects :id=rgb-matrix-effects

All effects have been configured to support current configuration values (Hue, Saturation, Value, & Speed) unless otherwise noted below. These are the effects that are currently available:

enum rgb_matrix_effects {
    RGB_MATRIX_NONE = 0,
    RGB_MATRIX_SOLID_COLOR = 1,     // Static single hue, no speed support
    RGB_MATRIX_ALPHAS_MODS,         // Static dual hue, speed is hue for secondary hue
    RGB_MATRIX_GRADIENT_UP_DOWN,    // Static gradient top to bottom, speed controls how much gradient changes
    RGB_MATRIX_GRADIENT_LEFT_RIGHT,    // Static gradient left to right, speed controls how much gradient changes
    RGB_MATRIX_BREATHING,           // Single hue brightness cycling animation
    RGB_MATRIX_BAND_SAT,        // Single hue band fading saturation scrolling left to right
    RGB_MATRIX_BAND_VAL,        // Single hue band fading brightness scrolling left to right
    RGB_MATRIX_BAND_PINWHEEL_SAT,   // Single hue 3 blade spinning pinwheel fades saturation
    RGB_MATRIX_BAND_PINWHEEL_VAL,   // Single hue 3 blade spinning pinwheel fades brightness
    RGB_MATRIX_BAND_SPIRAL_SAT,     // Single hue spinning spiral fades saturation
    RGB_MATRIX_BAND_SPIRAL_VAL,     // Single hue spinning spiral fades brightness
    RGB_MATRIX_CYCLE_ALL,           // Full keyboard solid hue cycling through full gradient
    RGB_MATRIX_CYCLE_LEFT_RIGHT,    // Full gradient scrolling left to right
    RGB_MATRIX_CYCLE_UP_DOWN,       // Full gradient scrolling top to bottom
    RGB_MATRIX_CYCLE_OUT_IN,        // Full gradient scrolling out to in
    RGB_MATRIX_CYCLE_OUT_IN_DUAL,   // Full dual gradients scrolling out to in
    RGB_MATRIX_RAINBOW_MOVING_CHEVRON,  // Full gradient Chevron shapped scrolling left to right
    RGB_MATRIX_CYCLE_PINWHEEL,      // Full gradient spinning pinwheel around center of keyboard
    RGB_MATRIX_CYCLE_SPIRAL,        // Full gradient spinning spiral around center of keyboard
    RGB_MATRIX_DUAL_BEACON,         // Full gradient spinning around center of keyboard
    RGB_MATRIX_RAINBOW_BEACON,      // Full tighter gradient spinning around center of keyboard
    RGB_MATRIX_RAINBOW_PINWHEELS,   // Full dual gradients spinning two halfs of keyboard
    RGB_MATRIX_RAINDROPS,           // Randomly changes a single key's hue
    RGB_MATRIX_JELLYBEAN_RAINDROPS, // Randomly changes a single key's hue and saturation
    RGB_MATRIX_HUE_BREATHING,       // Hue shifts up a slight ammount at the same time, then shifts back
    RGB_MATRIX_HUE_PENDULUM,        // Hue shifts up a slight ammount in a wave to the right, then back to the left
    RGB_MATRIX_HUE_WAVE,            // Hue shifts up a slight ammount and then back down in a wave to the right
    RGB_MATRIX_PIXEL_FRACTAL,       // Single hue fractal filled keys pulsing horizontally out to edges
    RGB_MATRIX_PIXEL_FLOW,          // Pulsing RGB flow along LED wiring with random hues
    RGB_MATRIX_PIXEL_RAIN,          // Randomly light keys with random hues
#if defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS)
    RGB_MATRIX_TYPING_HEATMAP,      // How hot is your WPM!
    RGB_MATRIX_DIGITAL_RAIN,        // That famous computer simulation
#endif
#if defined(RGB_MATRIX_KEYPRESSES) || defined(RGB_MATRIX_KEYRELEASES)
    RGB_MATRIX_SOLID_REACTIVE_SIMPLE,   // Pulses keys hit to hue & value then fades value out
    RGB_MATRIX_SOLID_REACTIVE,      // Static single hue, pulses keys hit to shifted hue then fades to current hue
    RGB_MATRIX_SOLID_REACTIVE_WIDE       // Hue & value pulse near a single key hit then fades value out
    RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE  // Hue & value pulse near multiple key hits then fades value out
    RGB_MATRIX_SOLID_REACTIVE_CROSS      // Hue & value pulse the same column and row of a single key hit then fades value out
    RGB_MATRIX_SOLID_REACTIVE_MULTICROSS // Hue & value pulse the same column and row of multiple key hits then fades value out
    RGB_MATRIX_SOLID_REACTIVE_NEXUS      // Hue & value pulse away on the same column and row of a single key hit then fades value out
    RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS // Hue & value pulse away on the same column and row of multiple key hits then fades value out
    RGB_MATRIX_SPLASH,              // Full gradient & value pulse away from a single key hit then fades value out
    RGB_MATRIX_MULTISPLASH,         // Full gradient & value pulse away from multiple key hits then fades value out
    RGB_MATRIX_SOLID_SPLASH,        // Hue & value pulse away from a single key hit then fades value out
    RGB_MATRIX_SOLID_MULTISPLASH,   // Hue & value pulse away from multiple key hits then fades value out
#endif
    RGB_MATRIX_EFFECT_MAX
};

You can enable a single effect by defining ENABLE_[EFFECT_NAME] in your config.h:

Define Description
#define ENABLE_RGB_MATRIX_ALPHAS_MODS Enables RGB_MATRIX_ALPHAS_MODS
#define ENABLE_RGB_MATRIX_GRADIENT_UP_DOWN Enables RGB_MATRIX_GRADIENT_UP_DOWN
#define ENABLE_RGB_MATRIX_GRADIENT_LEFT_RIGHT Enables RGB_MATRIX_GRADIENT_LEFT_RIGHT
#define ENABLE_RGB_MATRIX_BREATHING Enables RGB_MATRIX_BREATHING
#define ENABLE_RGB_MATRIX_BAND_SAT Enables RGB_MATRIX_BAND_SAT
#define ENABLE_RGB_MATRIX_BAND_VAL Enables RGB_MATRIX_BAND_VAL
#define ENABLE_RGB_MATRIX_BAND_PINWHEEL_SAT Enables RGB_MATRIX_BAND_PINWHEEL_SAT
#define ENABLE_RGB_MATRIX_BAND_PINWHEEL_VAL Enables RGB_MATRIX_BAND_PINWHEEL_VAL
#define ENABLE_RGB_MATRIX_BAND_SPIRAL_SAT Enables RGB_MATRIX_BAND_SPIRAL_SAT
#define ENABLE_RGB_MATRIX_BAND_SPIRAL_VAL Enables RGB_MATRIX_BAND_SPIRAL_VAL
#define ENABLE_RGB_MATRIX_CYCLE_ALL Enables RGB_MATRIX_CYCLE_ALL
#define ENABLE_RGB_MATRIX_CYCLE_LEFT_RIGHT Enables RGB_MATRIX_CYCLE_LEFT_RIGHT
#define ENABLE_RGB_MATRIX_CYCLE_UP_DOWN Enables RGB_MATRIX_CYCLE_UP_DOWN
#define ENABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON Enables RGB_MATRIX_RAINBOW_MOVING_CHEVRON
#define ENABLE_RGB_MATRIX_CYCLE_OUT_IN Enables RGB_MATRIX_CYCLE_OUT_IN
#define ENABLE_RGB_MATRIX_CYCLE_OUT_IN_DUAL Enables RGB_MATRIX_CYCLE_OUT_IN_DUAL
#define ENABLE_RGB_MATRIX_CYCLE_PINWHEEL Enables RGB_MATRIX_CYCLE_PINWHEEL
#define ENABLE_RGB_MATRIX_CYCLE_SPIRAL Enables RGB_MATRIX_CYCLE_SPIRAL
#define ENABLE_RGB_MATRIX_DUAL_BEACON Enables RGB_MATRIX_DUAL_BEACON
#define ENABLE_RGB_MATRIX_RAINBOW_BEACON Enables RGB_MATRIX_RAINBOW_BEACON
#define ENABLE_RGB_MATRIX_RAINBOW_PINWHEELS Enables RGB_MATRIX_RAINBOW_PINWHEELS
#define ENABLE_RGB_MATRIX_RAINDROPS Enables RGB_MATRIX_RAINDROPS
#define ENABLE_RGB_MATRIX_JELLYBEAN_RAINDROPS Enables RGB_MATRIX_JELLYBEAN_RAINDROPS
#define ENABLE_RGB_MATRIX_HUE_BREATHING Enables RGB_MATRIX_HUE_BREATHING
#define ENABLE_RGB_MATRIX_HUE_PENDULUM Enables RGB_MATRIX_HUE_PENDULUM
#define ENABLE_RGB_MATRIX_HUE_WAVE Enables RGB_MATRIX_HUE_WAVE
#define ENABLE_RGB_MATRIX_PIXEL_FRACTAL Enables RGB_MATRIX_PIXEL_FRACTAL
#define ENABLE_RGB_MATRIX_PIXEL_FLOW Enables RGB_MATRIX_PIXEL_FLOW
#define ENABLE_RGB_MATRIX_PIXEL_RAIN Enables RGB_MATRIX_PIXEL_RAIN

?> These modes don't require any additional defines.

Framebuffer Defines Description
#define ENABLE_RGB_MATRIX_TYPING_HEATMAP Enables RGB_MATRIX_TYPING_HEATMAP
#define ENABLE_RGB_MATRIX_DIGITAL_RAIN Enables RGB_MATRIX_DIGITAL_RAIN

?> These modes also require the RGB_MATRIX_FRAMEBUFFER_EFFECTS define to be available.

Reactive Defines Description
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_SIMPLE Enables RGB_MATRIX_SOLID_REACTIVE_SIMPLE
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE Enables RGB_MATRIX_SOLID_REACTIVE
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_WIDE Enables RGB_MATRIX_SOLID_REACTIVE_WIDE
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE Enables RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_CROSS Enables RGB_MATRIX_SOLID_REACTIVE_CROSS
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_MULTICROSS Enables RGB_MATRIX_SOLID_REACTIVE_MULTICROSS
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_NEXUS Enables RGB_MATRIX_SOLID_REACTIVE_NEXUS
#define ENABLE_RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS Enables RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS
#define ENABLE_RGB_MATRIX_SPLASH Enables RGB_MATRIX_SPLASH
#define ENABLE_RGB_MATRIX_MULTISPLASH Enables RGB_MATRIX_MULTISPLASH
#define ENABLE_RGB_MATRIX_SOLID_SPLASH Enables RGB_MATRIX_SOLID_SPLASH
#define ENABLE_RGB_MATRIX_SOLID_MULTISPLASH Enables RGB_MATRIX_SOLID_MULTISPLASH

?> These modes also require the RGB_MATRIX_KEYPRESSES or RGB_MATRIX_KEYRELEASES define to be available.

RGB Matrix Effect Typing Heatmap :id=rgb-matrix-effect-typing-heatmap

This effect will color the RGB matrix according to a heatmap of recently pressed keys. Whenever a key is pressed its "temperature" increases as well as that of its neighboring keys. The temperature of each key is then decreased automatically every 25 milliseconds by default.

In order to change the delay of temperature decrease define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS:

#define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS 50

As heatmap uses the physical position of the leds set in the g_led_config, you may need to tweak the following options to get the best effect for your keyboard. Note the size of this grid is 224x64.

Limit the distance the effect spreads to surrounding keys.

#define RGB_MATRIX_TYPING_HEATMAP_SPREAD 40

Limit how hot surrounding keys get from each press.

#define RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT 16

Remove the spread effect entirely.

#define RGB_MATRIX_TYPING_HEATMAP_SLIM

It's also possible to adjust the tempo of heating up. It's defined as the number of shades that are increased on the HSV scale. Decreasing this value increases the number of keystrokes needed to fully heat up the key.

#define RGB_MATRIX_TYPING_HEATMAP_INCREASE_STEP 32

RGB Matrix Effect Solid Reactive :id=rgb-matrix-effect-solid-reactive

Solid reactive effects will pulse RGB light on key presses with user configurable hues. To enable gradient mode that will automatically change reactive color, add the following define:

#define RGB_MATRIX_SOLID_REACTIVE_GRADIENT_MODE

Gradient mode will loop through the color wheel hues over time and its duration can be controlled with the effect speed keycodes (RGB_SPI/RGB_SPD).

Custom RGB Matrix Effects :id=custom-rgb-matrix-effects

By setting RGB_MATRIX_CUSTOM_USER = yes in rules.mk, new effects can be defined directly from your keymap or userspace, without having to edit any QMK core files. To declare new effects, create a rgb_matrix_user.inc file in the user keymap directory or userspace folder.

?> Hardware maintainers who want to limit custom effects to a specific keyboard can create a rgb_matrix_kb.inc file in the root of the keyboard directory, and add RGB_MATRIX_CUSTOM_KB = yes to the keyboard level rules.mk.

To use custom effects in your code, simply prepend RGB_MATRIX_CUSTOM_ to the effect name specified in RGB_MATRIX_EFFECT(). For example, an effect declared as RGB_MATRIX_EFFECT(my_cool_effect) would be referenced with:

rgb_matrix_mode(RGB_MATRIX_CUSTOM_my_cool_effect);
// !!! DO NOT ADD #pragma once !!! //

// Step 1.
// Declare custom effects using the RGB_MATRIX_EFFECT macro
// (note the lack of semicolon after the macro!)
RGB_MATRIX_EFFECT(my_cool_effect)
RGB_MATRIX_EFFECT(my_cool_effect2)

// Step 2.
// Define effects inside the `RGB_MATRIX_CUSTOM_EFFECT_IMPLS` ifdef block
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS

// e.g: A simple effect, self-contained within a single method
static bool my_cool_effect(effect_params_t* params) {
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
  for (uint8_t i = led_min; i < led_max; i++) {
    rgb_matrix_set_color(i, 0xff, 0xff, 0x00);
  }
  return rgb_matrix_check_finished_leds(led_max);
}

// e.g: A more complex effect, relying on external methods and state, with
// dedicated init and run methods
static uint8_t some_global_state;
static void my_cool_effect2_complex_init(effect_params_t* params) {
  some_global_state = 1;
}
static bool my_cool_effect2_complex_run(effect_params_t* params) {
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
  for (uint8_t i = led_min; i < led_max; i++) {
    rgb_matrix_set_color(i, 0xff, some_global_state++, 0xff);
  }
  return rgb_matrix_check_finished_leds(led_max);
}
static bool my_cool_effect2(effect_params_t* params) {
  if (params->init) my_cool_effect2_complex_init(params);
  return my_cool_effect2_complex_run(params);
}

#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

For inspiration and examples, check out the built-in effects under quantum/rgb_matrix/animations/.

Colors :id=colors

These are shorthands to popular colors. The RGB ones can be passed to the setrgb functions, while the HSV ones to the sethsv functions.

RGB HSV
RGB_AZURE HSV_AZURE
RGB_BLACK/RGB_OFF HSV_BLACK/HSV_OFF
RGB_BLUE HSV_BLUE
RGB_CHARTREUSE HSV_CHARTREUSE
RGB_CORAL HSV_CORAL
RGB_CYAN HSV_CYAN
RGB_GOLD HSV_GOLD
RGB_GOLDENROD HSV_GOLDENROD
RGB_GREEN HSV_GREEN
RGB_MAGENTA HSV_MAGENTA
RGB_ORANGE HSV_ORANGE
RGB_PINK HSV_PINK
RGB_PURPLE HSV_PURPLE
RGB_RED HSV_RED
RGB_SPRINGGREEN HSV_SPRINGGREEN
RGB_TEAL HSV_TEAL
RGB_TURQUOISE HSV_TURQUOISE
RGB_WHITE HSV_WHITE
RGB_YELLOW HSV_YELLOW

These are defined in color.h. Feel free to add to this list!

Additional config.h Options :id=additional-configh-options

#define RGB_MATRIX_KEYPRESSES // reacts to keypresses
#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (instead of keypresses)
#define RGB_MATRIX_FRAMEBUFFER_EFFECTS // enable framebuffer effects
#define RGB_MATRIX_TIMEOUT 0 // number of milliseconds to wait until rgb automatically turns off
#define RGB_DISABLE_WHEN_USB_SUSPENDED // turn off effects when suspended
#define RGB_MATRIX_LED_PROCESS_LIMIT (RGB_MATRIX_LED_COUNT + 4) / 5 // limits the number of LEDs to process in an animation per task run (increases keyboard responsiveness)
#define RGB_MATRIX_LED_FLUSH_LIMIT 16 // limits in milliseconds how frequently an animation will update the LEDs. 16 (16ms) is equivalent to limiting to 60fps (increases keyboard responsiveness)
#define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
#define RGB_MATRIX_DEFAULT_MODE RGB_MATRIX_CYCLE_LEFT_RIGHT // Sets the default mode, if none has been set
#define RGB_MATRIX_DEFAULT_HUE 0 // Sets the default hue value, if none has been set
#define RGB_MATRIX_DEFAULT_SAT 255 // Sets the default saturation value, if none has been set
#define RGB_MATRIX_DEFAULT_VAL RGB_MATRIX_MAXIMUM_BRIGHTNESS // Sets the default brightness value, if none has been set
#define RGB_MATRIX_DEFAULT_SPD 127 // Sets the default animation speed, if none has been set
#define RGB_MATRIX_DISABLE_KEYCODES // disables control of rgb matrix by keycodes (must use code functions to control the feature)
#define RGB_MATRIX_SPLIT { X, Y } 	// (Optional) For split keyboards, the number of LEDs connected on each half. X = left, Y = Right.
                              		// If RGB_MATRIX_KEYPRESSES or RGB_MATRIX_KEYRELEASES is enabled, you also will want to enable SPLIT_TRANSPORT_MIRROR
#define RGB_TRIGGER_ON_KEYDOWN      // Triggers RGB keypress events on key down. This makes RGB control feel more responsive. This may cause RGB to not function properly on some boards

EEPROM storage :id=eeprom-storage

The EEPROM for it is currently shared with the LED Matrix system (it's generally assumed only one feature would be used at a time), but could be configured to use its own 32bit address with:

#define EECONFIG_RGB_MATRIX (uint32_t *)28

Where 28 is an unused index from eeconfig.h.

Functions :id=functions

Direct Operation :id=direct-operation

Function Description
rgb_matrix_set_color_all(r, g, b) Set all of the LEDs to the given RGB value, where r/g/b are between 0 and 255 (not written to EEPROM)
rgb_matrix_set_color(index, r, g, b) Set a single LED to the given RGB value, where r/g/b are between 0 and 255, and index is between 0 and RGB_MATRIX_LED_COUNT (not written to EEPROM)

Disable/Enable Effects :id=disable-enable-effects

Function Description
rgb_matrix_toggle() Toggle effect range LEDs between on and off
rgb_matrix_toggle_noeeprom() Toggle effect range LEDs between on and off (not written to EEPROM)
rgb_matrix_enable() Turn effect range LEDs on, based on their previous state
rgb_matrix_enable_noeeprom() Turn effect range LEDs on, based on their previous state (not written to EEPROM)
rgb_matrix_disable() Turn effect range LEDs off, based on their previous state
rgb_matrix_disable_noeeprom() Turn effect range LEDs off, based on their previous state (not written to EEPROM)

Change Effect Mode :id=change-effect-mode

Function Description
rgb_matrix_mode(mode) Set the mode, if RGB animations are enabled
rgb_matrix_mode_noeeprom(mode) Set the mode, if RGB animations are enabled (not written to EEPROM)
rgb_matrix_step() Change the mode to the next RGB animation in the list of enabled RGB animations
rgb_matrix_step_noeeprom() Change the mode to the next RGB animation in the list of enabled RGB animations (not written to EEPROM)
rgb_matrix_step_reverse() Change the mode to the previous RGB animation in the list of enabled RGB animations
rgb_matrix_step_reverse_noeeprom() Change the mode to the previous RGB animation in the list of enabled RGB animations (not written to EEPROM)
rgb_matrix_increase_speed() Increase the speed of the animations
rgb_matrix_increase_speed_noeeprom() Increase the speed of the animations (not written to EEPROM)
rgb_matrix_decrease_speed() Decrease the speed of the animations
rgb_matrix_decrease_speed_noeeprom() Decrease the speed of the animations (not written to EEPROM)
rgb_matrix_set_speed(speed) Set the speed of the animations to the given value where speed is between 0 and 255
rgb_matrix_set_speed_noeeprom(speed) Set the speed of the animations to the given value where speed is between 0 and 255 (not written to EEPROM)
rgb_matrix_reload_from_eeprom() Reload the effect configuration (enabled, mode and color) from EEPROM

Change Color :id=change-color

Function Description
rgb_matrix_increase_hue() Increase the hue for effect range LEDs. This wraps around at maximum hue
rgb_matrix_increase_hue_noeeprom() Increase the hue for effect range LEDs. This wraps around at maximum hue (not written to EEPROM)
rgb_matrix_decrease_hue() Decrease the hue for effect range LEDs. This wraps around at minimum hue
rgb_matrix_decrease_hue_noeeprom() Decrease the hue for effect range LEDs. This wraps around at minimum hue (not written to EEPROM)
rgb_matrix_increase_sat() Increase the saturation for effect range LEDs. This wraps around at maximum saturation
rgb_matrix_increase_sat_noeeprom() Increase the saturation for effect range LEDs. This wraps around at maximum saturation (not written to EEPROM)
rgb_matrix_decrease_sat() Decrease the saturation for effect range LEDs. This wraps around at minimum saturation
rgb_matrix_decrease_sat_noeeprom() Decrease the saturation for effect range LEDs. This wraps around at minimum saturation (not written to EEPROM)
rgb_matrix_increase_val() Increase the value for effect range LEDs. This wraps around at maximum value
rgb_matrix_increase_val_noeeprom() Increase the value for effect range LEDs. This wraps around at maximum value (not written to EEPROM)
rgb_matrix_decrease_val() Decrease the value for effect range LEDs. This wraps around at minimum value
rgb_matrix_decrease_val_noeeprom() Decrease the value for effect range LEDs. This wraps around at minimum value (not written to EEPROM)
rgb_matrix_sethsv(h, s, v) Set LEDs to the given HSV value where h/s/v are between 0 and 255
rgb_matrix_sethsv_noeeprom(h, s, v) Set LEDs to the given HSV value where h/s/v are between 0 and 255 (not written to EEPROM)

Query Current Status :id=query-current-status

Function Description
rgb_matrix_is_enabled() Gets current on/off status
rgb_matrix_get_mode() Gets current mode
rgb_matrix_get_hue() Gets current hue
rgb_matrix_get_sat() Gets current sat
rgb_matrix_get_val() Gets current val
rgb_matrix_get_hsv() Gets hue, sat, and val and returns a HSV structure
rgb_matrix_get_speed() Gets current speed
rgb_matrix_get_suspend_state() Gets current suspend state

Callbacks :id=callbacks

Indicators :id=indicators

If you want to set custom indicators, such as an LED for Caps Lock, or layer indication, you can use the rgb_matrix_indicators_kb or rgb_matrix_indicators_user function for that:

bool rgb_matrix_indicators_kb(void) {
    if (!rgb_matrix_indicators_user()) {
        return false;
    }
    rgb_matrix_set_color(index, red, green, blue);
    return true;
}

In addition, there are the advanced indicator functions. These are aimed at those with heavily customized displays, where rendering every LED per cycle is expensive. Such as some of the "drashna" layouts. This includes a special macro to help make this easier to use: RGB_MATRIX_INDICATOR_SET_COLOR(i, r, g, b).

bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
    RGB_MATRIX_INDICATOR_SET_COLOR(index, red, green, blue);
    return false;
}

Indicator Examples :id=indicator-examples

Caps Lock indicator on alphanumeric flagged keys:

bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
    if (host_keyboard_led_state().caps_lock) {
        for (uint8_t i = led_min; i < led_max; i++) {
            if (g_led_config.flags[i] & LED_FLAG_KEYLIGHT) {
                rgb_matrix_set_color(i, RGB_RED);
            }
        }
    }
    return false;
}

Layer indicator on all keys:

bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
    for (uint8_t i = led_min; i < led_max; i++) {
        switch(get_highest_layer(layer_state|default_layer_state)) {
            case 2:
                rgb_matrix_set_color(i, RGB_BLUE);
                break;
            case 1:
                rgb_matrix_set_color(i, RGB_YELLOW);
                break;
            default:
                break;
        }
    }
    return false;
}

Layer indicator only on keys with configured keycodes:

bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
    if (get_highest_layer(layer_state) > 0) {
        uint8_t layer = get_highest_layer(layer_state);

        for (uint8_t row = 0; row < MATRIX_ROWS; ++row) {
            for (uint8_t col = 0; col < MATRIX_COLS; ++col) {
                uint8_t index = g_led_config.matrix_co[row][col];

                if (index >= led_min && index < led_max && index != NO_LED &&
                keymap_key_to_keycode(layer, (keypos_t){col,row}) > KC_TRNS) {
                    rgb_matrix_set_color(index, RGB_GREEN);
                }
            }
        }
    }
    return false;
}

?> Split keyboards will require layer state data syncing with #define SPLIT_LAYER_STATE_ENABLE. See Data Sync Options for more details.

Examples :id=indicator-examples

This example sets the modifiers to be a specific color based on the layer state. You can use a switch case here, instead, if you would like. This uses HSV and then converts to RGB, because this allows the brightness to be limited (important when using the WS2812 driver).

bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
    HSV hsv = {0, 255, 255};

    if (layer_state_is(layer_state, 2)) {
        hsv = {130, 255, 255};
    } else {
        hsv = {30, 255, 255};
    }

    if (hsv.v > rgb_matrix_get_val()) {
        hsv.v = rgb_matrix_get_val();
    }
    RGB rgb = hsv_to_rgb(hsv);

    for (uint8_t i = led_min; i < led_max; i++) {
        if (HAS_FLAGS(g_led_config.flags[i], 0x01)) { // 0x01 == LED_FLAG_MODIFIER
            rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
        }
    }
    return false;
}

If you want to indicate a Host LED status (caps lock, num lock, etc), you can use something like this to light up the caps lock key:

bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
    if (host_keyboard_led_state().caps_lock) {
        RGB_MATRIX_INDICATOR_SET_COLOR(5, 255, 255, 255); // assuming caps lock is at led #5
    } else {
        RGB_MATRIX_INDICATOR_SET_COLOR(5, 0, 0, 0);
    }
    return false;
}

?> RGB indicators on split keyboards will require state information synced to the slave half (e.g. #define SPLIT_LAYER_STATE_ENABLE). See data sync options for more details.

Indicators without RGB Matrix Effect

If you want to just use RGB indicators without RGB matrix effect, it is not possible to disable the latter because toggling RGB off will disable everything. You can workaround it with solid effect and colors off using this init function:

void keyboard_post_init_user(void) {
    rgb_matrix_mode_noeeprom(RGB_MATRIX_SOLID_COLOR);
    rgb_matrix_sethsv_noeeprom(HSV_OFF);
}